# physics

A small block is released from rest at the top of a frictionless incline. The distance from the top of the incline to the bottom, measured along the incline, is 3.60 m. The vertical distance from the top of the incline to the bottom is 1.36 m. If
g = 9.80 m/s2,
what is the acceleration of the block as it slides down the incline?

1. 👍 0
2. 👎 0
3. 👁 1,425
1. (1/2) m v^2 = m g h
v^2 = 2 g h
v^2 = 2 * 9.81* 1.36
v = 5.17 m/s
so the change in velocity from top to bottom is 5.17

acceleration is constant so average speed = 5.17/2 = 2.58 m/s

so it took 3.6 /2.58 = 1.39 seconds for the block to get down the slope
the velocity changed from 0 to 5.17 m/s in 1.39 seconds
so
a = change in velocity/change in time
= 5.17 m/s /1.39s = 3.71 m/s^2

1. 👍 2
2. 👎 0

## Similar Questions

1. ### Physics

A block of mass m is placed in a smooth-bored spring gun at the bottom of the incline so that it compresses the spring by an amount x_c. The spring has spring constant k. The incline makes an angle theta with the horizontal and

2. ### Physics

A block of mass m = 2.00 kg is released from rest h = 0.500 m from the surface of a table, at the top of a theta = 30.0° incline. The frictionless incline is fixed on a table of height H = 2.00 m. (a) Determine the acceleration

3. ### Physics

A block slides down a frictionless plane having an inclination of θ = 13.2°. The block starts from rest at the top, and the length of the incline is 1.70 m. -> Find the acceleration of the block. (m/s2 down the incline) -> Find

4. ### physics

[20 pts] A 2.00 kg block is pushed against a spring with negligible mass and force constant k = 400 N/m, compressing it 0.220 m. When the block is released, it moves along a frictionless, horizontal surface and then up a

1. ### physics

A 3.00 kg block starts from rest at the top of a 30° incline and accelerates uniformly down the incline, moving 1.94 m in 1.70 s. (a) Find the magnitude of the acceleration of the block. (b) Find the coefficient of kinetic

2. ### physics

A 3 kg block (block A) is released from rest at the top of a 20 m long frictionless ramp that is 5 m high. At the same time, an identical block (block B) is released next to the ramp so that it drops straight down the same 5 m.

3. ### Engineering Physics

A 1.0-kg block is released from rest at the top of a frictionless incline that makes and angle of 37 degrees with the horizontal. An unknown distance down the incline from the point of release, there is a spring with k=200 N/m. It

4. ### physics

Two blocks connected by a cord passing over a small, frictionless pulley rest on frictionless planes: a) What is the acceleration of the blocks? b) What is the tension in the cord? c) Which way will the system move when the blocks

1. ### physicssssss

A block with mass m = 14 kg rests on a frictionless table and is accelerated by a spring with spring constant k = 4545 N/m after being compressed a distance x1 = 0.515 m from the spring’s unstretched length. The floor is

2. ### AP Physics

Block A (mass 40 kg) and block B (mass 80 kg) are connected by a string of negligible mass as shown in the figure. The pulley is frictionless and has a negligible mass. If the coefficient of kinetic friction between block A and

3. ### physics

A block with mass m = 14 kg rests on a frictionless table and is accelerated by a spring with spring constant k = 4545 N/m after being compressed a distance x1 = 0.515 m from the spring’s unstretched length. The floor is

4. ### physics

A small block with mass 0.200 kg is released from rest at the top of a frictionless incline. The block travels a distance 0.440 m down the incline in 2.00 s. The 0.200 kg block is replaced by a 0.400 kg block. If the 0.400 kg