# vector and mass

A particle of mass m kg is acted on by two forces F1 and F2 with magnitudes 3root5 newtons and root5 newtons ad drections parallel to the vectors i+2j and i-2j respectively

The particle is initially at a position given by vector 2i+j

iv calculated the cartesian components of F1 and F2
F1 = 3i+6j
F2 = i 2j

iv also calculated the cartesian component of the total force F1+F2 = (3i+6j)+(i-2j) = 4i +4j

however the part im struggling on is that now the particle is of mass 1kg and is initially at rest, i have to use newtons 2nd law to write down an equation of motion and find the position of the particle after 1second.

so far iv tried:
F=ma
F1+F2= 1a
therefore a = 4i+4j but then i don't know how to find the new posistion ...can anyonehelp thankz

New postion= oldposition +intialvelocity*time + 1/2 acceleration*time^2. Technically, you should integrate to get this equation, but because acceleration is constant, the integration leads to the preceeding.

where acceleration= force/mass, and you have force and mass.

all the above of course is a vector equation, not messy at all. You can work the i,j components as separate equations, as the system is orthogonal. If needed, I can critique your work.

thankz iv worked it out

Assuming you have calculated the "a" vector correctly, just multiply it by t^2 to get the vector position change at time t. You do not have to add a term for (initial velocty vector) times t,, because the mass was initially at rest.

Add the position change vector to the initial position coordinates to get the new location.

I forgot about the factor (1/2) when calculating the position change due to acceleration. Bob Pursley's answer, posted just before mine, is correct

I have no clue.

1. 👍
2. 👎
3. 👁

## Similar Questions

1. ### AP Physics C

One dimension. In the figure, two point particles are fixed on an x axis separated by distance d. Particle A has mass mA and particle B has mass 5.00 mA. A third particle C, of mass 62.0 mA, is to be placed on the x axis and near

2. ### Physics

Particle 1 carrying -4.0 μC of charge is fixed at the origin of an xy coordinate system, particle 2 carrying +8.0 μC of charge is located on the x axis at x = 2.0 m , and particle 3, identical to particle 2, is located on the x

3. ### physics

Two forces, 1 = (3.85 − 2.85) N and 2 = (2.95 − 3.65) N, act on a particle of mass 2.10 kg that is initially at rest at coordinates (−2.30 m, −3.60 m). (a) What are the components of the particle's velocity at t = 11.8 s?

4. ### physics

three point particles are fixed in place in an xy plane. Particle A has mass mA = 3 g, particle B has mass 2.00mA, and particle C has mass 3.00mA. A fourth particle D, with mass 4.00mA, is to be placed near the other three

1. ### Physics/Math

A force F = (4.0 N)i + cj acts on a particle as the particle goes through displacement d = (3.4 m)i - (2.0 m)j. (Other forces also act on the particle.) What is the value of c if the work done on the particle by force F is each of

2. ### Physics

A particle of mass m1 = 2.5 kg moving along the x axis collides with a particle of mass m2 = 4.9 kg initially at rest. The incoming particle is deflected in the direction 22 degrees above the x axis, whereas the target particle

3. ### physics

Two dimensions. In the figure, three point particles are fixed in place in an xy plane. Particle A has mass mA = 4 g, particle B has mass 2.00mA, and particle C has mass 3.00mA. A fourth particle D, with mass 4.00mA, is to be

4. ### physics

a man of 1kg is acted upon a single force Fvector=(4i+4j)N.Due to force, mass is (D,0) to(1m,1m).If initially the speed of the particle 2m/s.Its final speed showd approximately be ?

1. ### Physics

Plz, i need the workings. An object is acted upon by two forces of 5N and 12N. Calculate the resultant of two forces if the forces acting perpendicular to each other

2. ### Physics

A particle with a mass of 1.55 kg is acted on by a force Fx acting in the x-direction. If the magnitude of the force varies in time as shown in the figure below, determine the following.

3. ### physics

In the figure below, two point particles are fixed on an x axis separated by a distance d. Particle A has mass mA and particle B has mass 4.00mA. A third particle C, of mass 96.0mA, is to be placed on the x axis and near particles

4. ### physics

One dimension. In Fig. 13-32, two point particles are fixed on an x axis separated by distance d. Particle A has mass mA and particle B has mass 4.00 mA. A third particle C, of mass 80.0 mA, is to be placed on the x axis and near