classical mechanic

A small cube of mass m1= 1.0 kg slides down a circular and frictionless track of radius R= 0.4 m cut into a large block of mass m2= 4.0 kg as shown in the figure below. The large block rests on a horizontal and frictionless table. The cube and the block are initially at rest, and the cube m1 starts from the top of the path. Find the speed of the cube v1 as it leaves the block. Take g= 10.0 m/s2. Enter your answer in m/s.


v1=


unanswered

  1. 👍 0
  2. 👎 0
  3. 👁 136

Respond to this Question

First Name

Your Response

Similar Questions

  1. Physics

    A small cube of mass m1= 1.0 kg slides down a circular and frictionless track of radius R= 0.5 m cut into a large block of mass m2= 4.0 kg. The large block rests on a horizontal and frictionless table. The cube and the

    asked by tyger2020 on December 11, 2018
  2. physics

    A small cube of mass m1= 2.0 kg slides down a circular and frictionless track of radius R= 0.6 m cut into a large block of mass m2= 5.0 kg as shown in the figure below. The large block rests on a horizontal and frictionless table.

    asked by Anonymous on January 12, 2014
  3. physics

    A small cube of mass m1= 1.0 kg slides down a circular and frictionless track of radius R= 0.4 m cut into a large block of mass m2= 4.0 kg as shown in the figure below. The large block rests on a horizontal and frictionless table.

    asked by Garry on January 11, 2014
  4. Physics Classical Mechanics Help ASAP

    A small cube of mass m1= 1.0 kg slides down a circular and frictionless track of radius R= 0.6 m cut into a large block of mass m2= 4.0 kg as shown in the figure below. The large block rests on a horizontal and frictionless table.

    asked by Anonymous on January 10, 2014
  5. 8.01x Classical Mechanics

    Sliding Blocks (14 points possible) A small cube of mass 1.0 kg slides down a circular and frictionless track of radius 0.6 m cut into a large block of mass 4.0 kg as shown in the figure below. The large block rests on a

    asked by Anonymous on January 11, 2014
  6. Physics

    The diagram below shows a large cube of mass 25 kg being accelerated across a frictionless level floor by a horizontal force, F. A small cube of mass 4.0 kg is in contact with the front surface of the cube. The coefficient of

    asked by Bob on November 15, 2012
  7. science

    A block of mass 0.5 kg is pushed a distance x against a spring with k=450 N/m. When released the block slides along a frictionless horizontal surface to a point B, the bottom of a vertical circular track of radius R=1 meter. The

    asked by claire on June 18, 2011
  8. Physics

    An ice cube of mass M is placed at rest in on a circular track of radius R, as shown at right. The position of the ice cube along the track follows that of a circle, given by: x^2 + (R – y)^2 = R^2 . A)With respect to the bottom

    asked by Jimmy on May 1, 2009
  9. Physics

    A small block of mass m slides along the frictionless loop track,if it starts from rest at point p,what us the resultant force acting on it at q?

    asked by Anonymous on March 20, 2013
  10. physics

    A small block of mass 42 kg slides along a frictionless loop-the-loop track. The radius of the loop is 5 meters. At what height above the bottom of the track should the block be released from so that it just makes it through the

    asked by Anonymous on March 7, 2014

More Similar Questions