# Posts by Bosnian

Total # Posts: 2,508

**Algebra**

5 ( x + 6 ) = 5 x + 30 12 x - 25 ¡Ý 3 x - 5 ( x + 6 ) 12 x - 25 ¡Ý 3 x - ( 5 / x - 6 ) ) 12 x - 25 3 x - ( 5 x + 30 ) 12 x - 25 ¡Ý 3 x - 5 x - 30 12 x - 25 ¡Ý - 2 x - 30 Add 2 x to both dides 12 x - 25 + 2 x ¡Ý...

**math**

12 % = 12 / 100 = 0.12 250 / 0.12 = 250 * 100 / ( 0.12 * 100 ) 25,000 / 12 = 2 * 2 * 2 * 5 * 5 * 5 * 5 * 5 / ( 2 * 2 * 3 ) = 2 * 5 * 5 * 5 * 5 * 5 / 3 = 6250/ 3 = 2083.3333...

**Math**

1 kg = 1000 g 2 kg 300 g = 1 kg + 1 kg + 300 g = 1 kg + 1000 g + 300 g = 1 kg 1300 g 2 kg 300 g - 1 kg 700 g = 1 kg 1300 g - 1 kg 700 g = 600 g The mass of the empty basket = 600 g

**Math**

L = 2 + 2 W = 2 ( 1 + W ) A = L * W 24 = 2 * ( 1 + W ) * W 24 = 2 * ( W + W ^ 2 ) Divide both sides by 2 12 = W + W ^ 2 Subtract 12 to both sides 0 = W + W ^ 2 - 12 Now you must solwe equation : W ^ 2 + W - 12 = 0 The exact solutions are 3 and - 4 Width cannot be negative so W...

**math**

The vertex of a parabola: y = a x ^ 2 + b x + c is the point where the parabola crosses its axis. If the coefficient of the x ^ 2 term is positive, the vertex will be the lowest point on the graph, the point at the bottom of the “U”-shape. If the coefficient of the x...

**calculus**

Go on: wolframalpha dot com When page be open in rectangle type: limit x^3-2/x^2+x as x-> - infinity and click option = After few seconds when you see result click option: Show steps On wolfram alpha dot com you can practice any kind of calculus. That is good just for ...

**calculus**

Go on: wolframalpha dot com When page be open in rectangle type: derivative sin(x^3-5x^2+4x-7) and click option = After few seconds when you see result click option: Show steps On wolfram alpha dot com you can practice any kind of calculus. That is good just for practice. You ...

**math help**

P.S. When you type : derivative (x^2+lnx)(2+e^x) you must click option = in rectangle

**math help**

Go on : wolframalpha dot com When page be open in rectangle type : derivative (x^2+lnx)(2+e^x) After few seconds when you see results click option : Show steps

**math help**

What is your question?

**math**

What is your question?

**Geometry**

tan ( theta ) = 4 / 3 theta = inverse tangent ( 4 / 3 ) theta = 53 ° 7 ´ 48 " theta = 53 ° to the nearest degree

**Math**

¡Ý mean greater or equal

**Math**

- 5 ( 4 x - 14 ) ¡Ý - 25 x + 35 - 20 x + 70 ¡Ý - 25 x + 35 - 20 x + 25 x ¡Ý 35 - 70 5 x ¡Ý - 35 Divide both sides by 5 x ¡Ý - 7 Ansver D

**Algebra**

The graph of any function in the form y = a x ^ 2 + b x + c is a parabola. A quadratic equationhas two solutions. In this case : x 1 = [ - 3 -s qrt ( 29 ) ] / 10 and x 2 = [ - 3 + sqrt ( 29 ) ] / 10 If coefficient a is positive then the graph of parabola is concave up. If ...

**ALGEBRA**

x = - 6 y = ( 4 / 3 ) * ( - 6 ) + 1 = - 24 / 3 + 1 = - 8 + 1 = - 7 x = - 3 y = ( 4 / 3 ) * ( - 3 ) + 1 = - 12 / 3 + 1 = - 4 + 1 = - 3 x = 6 y = ( 4 / 3 ) * 6 + 1 = 24 / 3 + 1 = 8 + 1 = 9 For plot : In google type : point plotter When you see list of result click on: Graph ...

**ALGEBRA**

The x-intercept of a line is the point at which the line crosses the x axis. ( i.e. where the y value equals 0 ) In this case : - 4 x + 9 * 0 = - 36 - 4 x = - 36 Divide both sides by -4 x = - 36 / - 4 = 9 x - intercept point (9,0) The z-intercept of a line is the point at ...

**algebra**

L = Length W = Width The perimeter of a rectangle P = 2 L + 2 W In this case W = 2 m P = 34 m 34 = 2 L + 2 * 2 34 = 2 L + 4 Subtract 4 for both sides 34 - 4 = 2 L + 4 - 4 30 = 2 L Divide both sides by 2 15 = L L = 15 m

**Calculus**

y = sqrt ( 3 x ) = sqrt ( 3 ) * sqrt ( x ) d y / d x =sqrt ( 3 ) * 1 / 2 sqrt ( x ) d y / d x = ( 1 / 2 ) * sqrt ( 3 / x )

**Integrated Math 1**

If you want to see graph go on: rechneronline.de In blue rectangle type : - x ^ 2 + 25 Set : Range x-axis from - 10 to 10 Range x-axis from - 10 to 40 and click option Draw

**Integrated Math 1**

Answer A.

**Integrated Math 1**

The standard equation of a parabola is : y = a x ^ 2 + bx + c The vertex of a parabola is the point where the parabola crosses its axis. If the coefficient of the x ^ 2 term is positive, the vertex will be the lowest point on the graph, the point at the bottom of the “U&#...

**math**

Rate Sam works : ( 1 job ) / x hrs Rate Denise works : ( 1 job ) / ( x + 2) hrs Rate together : 1 / x + 1 / ( x + 2 ) =

**TRIG**

cos theta = + OR - 1 / sqrt ( 1 + tan ^ 2 theta ) In Quadrant II, cosine are negative so : cos theta = - 1 / sqrt ( 1 + tan ^ 2 theta ) cos theta = - 1 / sqrt [ 1 + ( 3 / 4 ) ^ 2 theta ] cos theta = - 1 / sqrt ( 1 + 9 / 16 ) cos theta = - 1 / sqrt ( 16 / 16 + 9 / 16 ) cos ...

**algebra**

How can a square table have different length and height?

**Integrated Math 1**

- 1 - 6 x ^ 2 - x ^ 3 - ( - 2 - 4 x ^ 2 ) = - 1 - 6 x ^ 2 - x ^ 3 + 2 + 4 x ^ 2 = - x ^ 3 - 2 x ^ 2 + 1 OR 1 - 2 x ^ 2 - x ^ 3 Answer A.

**Integrated Math 1**

- 16 x ^ 2 - x ^ 3 - ( - 2 - 4 x ^ 2 ) = - 16 x ^ 2 - x ^ 3 + 2 + 4 x ^ 2 = - x ^ 3 - 12 x ^ 2 + 2

**trigonometry**

If a central angle theta = 3 pi / 2 then : Circumference of a circle = 2 * r * pi Ful circle have 360 ° = 2 pi radians. Lenght of arc : L = ( theta / 2 pi ) * 2 * r * pi L = theta * r = 60 ( 3 pi / 2 ) * r = 60 Multiply both sides by 2 3 pi * r = 120 Divide both sides by 3...

**Math**

f = frame = 2.5 cm p = dimension of frame p + f = dimension of one side of square Area of a square painting : A = ( p + f ) ^ 2 = 3600 p + f = sqrt ( 3600 ) p + f = 60 p + 2.5 = 60 p = 60 - 2.5 = 57.5 cm

**Integrated math**

Definite integral 1 to 3 ( 3 x ^ 2 - 2 x + 1 ) dx = ( x ^ 3 - x ^ 2 + x ) from 1 to 3 = ( 3 ^ 3 - 3 ^ 2 + 3 ) - ( 1 ^ 3 - 1 ^ 2 + 1 ) = 27 - 9 + 3 - ( 1 - 1 + 1 ) = 21 - 1 = 20

**math**

Domain: The domain of a function is the set of all possible input values which allows the function formula to work.

**math**

Range: The range is the set of all possible output values , which result from using the function formula. In this case when x = 0 2 / x ^ 2 -> infinity. So domain : ( -infinity , 0 ] U [ 0 , infinity ) Or all value of x different of 0

**math**

1 h = 60 min 15 min = 1 / 4 h 17 / ( 1 / 4 ) = 4 * 17 = 68 km / h

**Trig**

sqrt ( 3 ) * csc ( 2 theta ) = - 2 Divide both sides by sqrt ( 3 ) csc ( 2 theta ) = - 2 / sqrt ( 3 ) Take the inverse cosecant of both sides. 2 theta = - pi / 3 and 2 theta = 4 pi / 3 [ Becouse csc ( pi / 3 ) = 2 / sqrt ( 3 ) , and csc ( 4 pi / 3 = 2 / sqrt ( 3 ) ] Divide ...

**Integrated Math 1**

- 3 x ^ 2 + 10 x - 6 = - 3 x ^ 2 - 17 x + 2 Add 3 x ^ 2 + 17 x - 2 to both sides. - 3 x ^ 2 + 3 x ^ 2 + 10 x + 17 x - 6 - 2 = - 3 x ^ 2 + 3 x ^ 2 - 17 x + 17 x + 2 - 2 27 x - 8 = 0 Add 8 to both sides. 27 x - 8 + 8 = 0 + 8 27 x = 8 Divide both sides by 27 x = 8 / 27 when x = 8...

**MAth**

A = 4 pi r ^ 2 A = 28.26 28.26 = 4 pi r ^ 2 28.26 / ( 4 pi ) = r ^ 2 r ^ 2 = 28.26 / ( 4 * 3.14 ) r ^ 2 = 28.26 / 12.56 = 2.25 r = sqrt ( 2.25 ) = 1.5 in Question 2 A = 4 pi r ^ 2 A = 4 * pi * 3.5 ^ 2 A = 4 * 3.14 * 12.25 A = 153.86 in ^ 2 Question 3 V = 4 * pi * r ^ 3 / 3 V...

**algebra**

If your expression mean: 5 * 5 - 35 + 21 - ( - 3 ) * ( - 3 ) * ( - 3 ) then: ( - 3 ) * ( - 3 ) = 9 ( - 3 ) * ( - 3 ) * ( - 3 ) = ( - 3 ) * 9 = - 27 - ( - 3 ) * ( - 3 ) * ( - 3 ) = - ( - 27 ) = 27 5 * 5 - 35 + 21 - ( - 3 ) * ( - 3 ) * ( - 3 ) = 25 - 35 + 21 + 27 = 38

**math**

1 hour = 60 min 1 day = 24 hours = 24 * 60 = 1440 min 1 hour 18 min = 78 min D = Day N = Night D = N + 78 D + N = 1440 min N + 78 + N = 1440 2 N + 78 = 1440 2 N = 1440 - 78 = 1362 N = 1362 / 2 = 681 min D = N + 78 = 681 + 78 = 759 min 12 * 60 = 720 759 - 720 = 39 759 min = 12 ...

**Math**

2 1/2 =2.5 W = 30 ft L = 2.5 * W = 2.5 * 30 = 75 ft

**Math**

10 / ( 1 / 5 ) = 50 50 ft / s 50 * 20 = 1,000 ft

**Maths - Ant Colony**

Interpolation polynomial for first set : ( x ^ 5 - 100 x ^ 4 + 4375 x ^ 3 - 65000 x ^ 2 + 827500 x + 2250000 ) / 37500 Interpolation polynomial for second set : 8 x + 400 ( x ^ 5 - 100 x ^ 4 + 4375 x ^ 3 - 65000 x ^ 2 + 827500 x + 2250000 ) / 37500 = 8 x + 400 Real solution : ...

**Math**

To find relative maxima and minima, first find the critical points (where f´ ( x ) is 0 or doesn´t exist). Then examine each critical point. It is a relative maximum if f´ changes from positive to negative or f" is negative. It is a relative minimum if f...

**Math**

To find relative maxima and minima, first find the critical points (where fŒ is 0 or doesnft exist). Then examine each critical point. It is a relative maximum if fŒ changes from positive to negative or f is negative. It is a relative ...

**arithmetic**

No an = 41 ( n ^ 2 + 157 n + 9442 ) / ( 39680 - 320 n )

**math**

2 x - 3 y = 5 2 * 3 - 3 y = 5 6 - 3 y = 5 Add - 6 to both sides 6 - 6 - 3 y = 5 - 6 - 3 y = - 1 Divide both sides by - 3 y = - 1 / - 3 y = 1 / 3

**math**

3 y = 9 - 2 x Divide both sides by 3 y = 9 / 3 - 2 x / 3 y = 3 - 2 x / 3 y = - ( 2 / 3 ) x + 3

**math**

0.68 * 8 = 5.44 0.68 in = 5 / 8 in to the nearest eight of an inch

**geometry**

Volume of the first cube V1 = h ^ 3 Volume of the second cube V2 = ( 5 h ) ^ 3 = 125 h ^ 3 V1 / V2 = h ^ 3 / ( 125 h ^ 3 ) = 1 / 125

**Algebra**

( 2 x ^ 2 - 5 x + 13 ) - 27 go on: calc101 dot com When page be open in first rectangle tape : 2x^3 - x^2 + 3x -1 In second rectangle type : x + 2 and click option : DO IT

**math**

a n = n ^ 3 1 ^ 3 = 1 2 ^ 3 = 8 3 ^ 3 = 27 4 ^ 3 = 64 5 ^ 3 = 125 6 ^ 3 = 216

**Algebra**

Go on : wolframalpha dot com If your exspression mean : (4/x)-2-(7/x^2)-4 then in rectangle type : solve (4/x)-2-(7/x^2)-4 and click option = If your exspression mean : 4/(x-2)-7/(x^2-4)=1 then in rectangle type : solve 4/(x-2)-7/(x^2-4)=1 and click option = After few secounds...

**Algebra II (Exponents)**

x ^ - 6 = 1 / x^ 6 third root of ( - 8 ) = - 2 ( -8 x ^ - 6 y ^ 15 ) ^ ( 1 /3 ) = third root of ( - 8 y ^ 15 / x ^ 6 ) = third root of ( - 8 ) * third root of ( x ^ 15 ) / third root of ( x ^ 6 ) = - 2 y ^ 5 / x ^ 2

**Algebra II (Exponents)**

( -1728 ) ^ ( 1 / 3 ) = third root of ( - 1728 ) = third root of ( - 1 ) * third root of ( 1728 ) = - 1 * 12 = - 12

**precalculus/trigonometry**

For x = - 2 y = ( - 2 ) ^ 2 = 4 ( x1 = - 2 , y1 = 4 ) For x = 4 y = 4 ^ 2 = 16 ( x2 = 4 , y2 = 16 ) The line through two distinct points (x1, y1) and (x2, y2) is given by y = y1 + [ ( y2 - y1 ) / ( x2 - x1 ) ] * ( x - x1 ) In your case : x1 = - 2 y1 = 4 x2 = 4 y2 = 16 y = y1...

**Intermediate Algebra**

A = Area L = Length W = Width A = 4 x ^ 2 + 19 x + 12 L = 4 x + 3 A = L * W W = A / L W = ( 4 x ^ 2 + 19 x + 12 ) / ( 4 x + 3 ) W = x + 4 P.S If you don't know how to divide that two exspression go on: calc101 dot com When page be open in first rectangle tape : 4 x ^ 2 + ...

**calculus (check my work please)**

Try to simplify your "different answers". Probably your "different answers" is same solutions write in different form.

**calculus (check my work please)**

In google type: wolfram alpha When you see lis of results click on: Wolfram Alpha:Computational Knowledge Engine When page be open in rectangle type: integrate sec^3(x)tan^3(x) dx and click option = After few secons you will see result. Then click option Show steps

**Math**

7 / ( x - 4 ) = 2 Multiply both sides by ( x - 4 ) 7 = 2 * ( x - 4 ) 7 = 2 x - 8 Add 8 to both sides 7 + 8 = 2 x - 8 + 8 15 = 2 x Divide both sides by 2 15 / 2 = x x = 15 / 2 = 7.5

**math**

4 * 1,500 + 2 * 120 * 12 = 6,000 + 2,880 = 8,880 $

**math**

39 * 71 - 30 * 50 = 2769 - 1500 = 1269 yd ^ 2

**math**

A. Product : 1 * 1 = 1 Sum : 1 + 1 = 2 B. Product : 0 * 2 = 0 Sum : 0 + 2 = 2 C. Product : 1 * 0 = 0 Sum : 1 + 0 = 1 D. Product : 2 * 2 = 4 Sum : 2 + 2 = 4 ANSWER D.

**GEOMETRY**

Type your question in google. You will find solution.

**math**

x1 + x2 + x3 = 86 + 92 + 94 = 272 ( x1 + x2 + x3 + x4 ) / 4 = 90 ( 272 + x4 ) / 4 = 90 Multiply both sides by 4 272 + x4 = 90 * 4 272 + x4 = 360 x4 = 360 - 272 = 88

**Math**

L = length of board piece a = length of first piece b = length of second ( shorter ) piece a = 2 b - 3 L = 18 = a + b = 2 b - 3 + b = 3 b - 3 3 b - 3 = 18 Add 3 to both sides 3 b - 3 + 3 = 18 + 3 3 b = 21 Divide both sides by 3 3 b / 3 = 21 / 3 b = 7 ft a = 2 b - 3 a = 2 * 7...

**Math**

The standard equation of a circle with center C ( h , k ) and radius r is as follows: ( x - h )^ 2 + ( y - k )^ 2 = r ^ 2 In your case r = sqrt( 25 ) = + OR - 5 Length can't be negative so r = 5

**math**

3 pi / 2 = 270 ° sin ( 3 pi / 2 ) = sin 270 ° = - 1 cos ( 3 pi / 2 ) = cos 270 ° = 0 cos ( A - B ) = cos A cos B + sin A sin B In this case : cos ( x - 3 pi / 2 ) = cos ( x ) * cos ( 3 pi / 2 ) + sin ( x ) * sin ( 3 pi / 2 ) = cos ( x ) * 0 + sin ( x ) * ( - 1 ) = ...

**math**

( x 1 + x 2 + x 3 + x 4 + x 5 ) / 5 = 89 Multiply both sides by 5 x 1 + x 2 + x 3 + x 4 + x 5 = 89 * 5 = 445 ( x 1 + x 2 + x 3 + x 4 + x 5 + x 6 ) / 6 = 90 ( 445 + x 6 ) / 6 = 90 Multiply both sides by 6 445 + x 6 = 6 * 90 = 540 x 6 = 540 - 445 = 95

**pre algebra check**

( 156 / 130 ) * 100 % = 1.2 * 100 % = 120 %

**pre algebra**

10.5 % = 10.5 / 100 = 0.105 0.105 * 250 = 26.25

**pre algebra**

100 % - 20 % = 80 % 80 % = 80 / 100 = 0.8 14 $ / 0.8 = 17.5 $

**calculus**

If (x+7)dx/x^2+14x+55 mean ( x + 7 ) dx / ( x ^ 2 + 14 x + 55 ) then substitute : u = x ^ 2 + 14 x + 5 d u = ( 2 x + 14 ) dx = 2 ( x + 7 ) d x Divide both sides by 2 du / 2 = ( x + 7 ) d x ( x + 7 ) d x = d u / 2 integral of [ ( x + 7 ) dx / ( x ^ 2 + 14 x + 55 ) ] = integral ...

**6th grade math**

V = Volume A = Area of trangle V = A * h A = s ^ 2 * sqrt ( 3 ) / 4 where s = length of equilateral triangle sides A = 6 ^ 2 * sqrt ( 3 ) / 4 A = 36 * sqrt ( 3 ) / 4 A = 4 * 9 * sqrt ( 3 ) / 4 A = 9 * sqrt ( 3 ) A = 9 * 1.73025 A = 15.58845 mm ^ 2 V = A * h V = 15.58845 * 8 .4...

**Algebra**

Another way : x + 8 / x = - 9 Multiply both sides by x x ^ 2 + 8 = - 9 x Add 9 x to both sides x ^ 2 + 8 + 9 x = - 9 x + 9 x x ^ 2 + 9 x + 8 = 0 In google type: quadratic equation online When you see list of results click on: Free Online Quadratic Equation Solver:Solve by ...

**Math**

x ^ 2 + y ^ 2 - 6 x - 8 y + 25 = 36 Equation of a circle in standard form : ( x - h ) ^ 2 + ( y - k ) ^ 2 = r ^ 2 x ^ 2 + y ^ 2 - 6 x - 8 y + 25 = 36 x ^ 2 - 6 x + y ^ 2 - 8 y + 25 = 36 ( x ^ 2 - 6 x ) + ( y ^ 2 - 8 y ) + 25 = 36 The process involves completing the square ...

**Algebra II**

The General Equation for a Conic Sections: A x ^ 2 + B x y + C y ^ 2 + D x + E y + F = 0 In this case: x ^ 2 - 4 y ^ 2 - 4 x - 8 y = 36 Subtract 36 to both sides x ^ 2 - 4 y ^ 2 - 4 x - 8 y - 36 = 0 1 * x ^ 2 + 0 * B x y - 4 * y ^ 2 - 4 * x - 8 * y - 36 = 0 A = 1 B = 0 C = - 4...

**Algebra**

w = width l = length A = Area l = w + 8 A = l * w A = ( w + 8 ) * w = 48 w ^ 2 + 8 w = 48 Subtract 48 to both sides w ^ 2 + 8 w - 48 = 48 - 48 w ^ 2 + 8 w - 48 = 0 The exact solutions are : w = 4 and w = - 12 Width can't be negative so : w = 4 cm l = w + 8 l = 4 + 8 = 12 ...

**Algebra**

( 2 x - 1 ) ^ 2 = 25 Take the square root of both sidea 2 x - 1 = + OR - 5 Add 1 to both sides 2 x - 1 + 1 = + OR - 5 + 1 2 x = + OR - 5 + 1 Divide both sides by 2 x = ( + OR - 5 + 1 ) / 2 x 1 = ( 5 + 1 ) / 2 = 6 / 2 = 3 x 2 = ( - 5 + 1 ) / 2 = - 4 / 2 = - 2

**Algebra II**

7 - 2 = 5 ( 7 − 2 ) ÷ 5 = 5 / 5 = 1

**Math**

Equations of a straight line : y = m x + b Where : m = slope b = the y intercept ( where the line crosses the y axis ) Parallel lines have the same slope. In this case m = 1 / 3 y = ( 1 / 3 ) x + b x = - 9 y = 5 5 = ( 1 / 3 ) ( - 9 ) + b 5 = - 3 + b Add 3 to both sides 5 + 3...

**math**

3 * 10 1 / 2 = 3 * 21 / 2 = 63 / 2 = 62 / 2 + 1 / 2 = 31 1 / 2

**Algebra; Help immediately.**

Sorry my tipfeler. Answer is A h = 160 t - 16 t ^ 2 400 = 160 t - 16 t ^ 2 160 t - 16 t ^ 2 = 400

**Algebra; Help immediately.**

h = height t = time h = 160 t - 16 t ^ 2 400 = 160 t - 16 t ^ 23 160 t - 16 t ^ 23 = 400

**Integral Calculus**

In google type: wolfram alpha When you see list of results click on: Wolfram Alpha:Computational Knowledge Engine When page be open in rectangle type: integrate x*arctan(x)dx and click option = After few secons you will see result. Then click option : Show steps

**Calculus**

a = first number b = second number a * b = 48 Divide both sides by a b = 48 / a S = the sum of one of the numbers and the cube of the other number S = a + b ^ 3 S = a + ( 48 / a ) ^ 3 S = a + 110,592 / a ^ 3 S = a + 110,592 * a ^ - 3 First derivaton : d S / d a = 1 - 3 * 110,...

**Alg 2**

Hyperbola Equation of hyperbola : ( x - h ) ^ 2 / a ^ 2 - ( y - k ) ^ 2 / b ^ 2 = 1 In this case : ( x + 3 ) ^ 2 / 16 - ( y - 5 ) ^ 2/ 64 = 1 [ x - ( - 3 ) ] ^ 2 / 4 ^ 2 - ( y - 5 ) ^ 2 / 8 ^ 2 = 1 h = - 3 k = 5 a = 4 b = 8

**algebra**

- 3 ( 5 x + 6 ) = 57 - 3 * 5 x - 3 * 6 = 57 - 15 x - 18 = 57 Add 18 to both sides - 15 x - 18 + 18 = 57 + 18 - 15 x = 75 Sivide both sides by - 15 x = 75 / - 15 x = 5 * 15 / - 15 x = - 5

**arithmetic**

Sorry correction. 100 * 100 * 100 = 1,000,000 1 m = 100 cm 1 m ^ 3 = 100 * 100 * 100 = 1,000,000 cm ^ 3 1.5 m ^ 3 = 1,500,000 cm ^ 3 1,500,000 candies

**arithmetic**

1 m = 100 cm 1 m ^ 3 = 100,000 cm ^ 3 1.5 m ^ 3 = 150,000 cm ^ 3 150,000 candies

**math 8**

W = Width L = Length W = 5 + L / 2 37 = 5 + L / 2 Subtract 5 to both sides 37 - 5 = 5 + L / 2 - 5 32 = L / 2 Multiply hoth sides by 2 64 = L L = 64 in

**flvs**

In google type : Petrified wood

**algebra**

( 16 x - 4 y ) - ( 10 x + 5 y ) = 16 x - 4 y - 10 x - 5 y = 6 x - 9 y

**Math**

d ( e ^ x ) / dx = e ^ x d ( log x ) / dx = 1 / x d y / dx = e ^ x + 3 * 1 / x d y / dx = e ^ x + 3 / x

**Math help please**

You must give angle between plank and wall or angle between plank and ground.

**Calculus I**

In google type: wolfram alpha When you see lis of results click on: Wolfram Alpha:Computational Knowledge Engine When page be open in rectangle type: derivartive ln((1+e^x)/(1-e^x)) and click option = After few secons you will see result. Then clic option Show steps

**Calculus**

In google type: wolfram alpha When you see lis of results click on: Wolfram Alpha:Computational Knowledge Engine When page be open in rectangle type: derivative (5x^2+9x-7)^5 and click option = After few secons you will see result. Then clic option Show steps Then type : ...

**math**

A = r ^ 2 * pi = 25 in ^ 2 r ^ 2 * pi = 25 Divide both sides by pi r ^ 2 = 25 / pi Take the square root of both sides r = + OR - sqrt ( 25 ) / sqrt ( pi ) r = + OR - 5 / sqrt ( pi ) Radius can't be negative so : r = 5 / sqrt ( pi ) r = 5 / sqrt ( 3.1416 ) r = 5 / 1.772456 ...

**Algebra**

Remark : ( a - b ) ^ 2 = a ^ 2 - 2 * a * b + b ^ 2

**Algebra**

sqrt ( x ) + 3 = sqrt ( x + 12 ) Subtract 3 from both sides: sqrt ( x ) + 3 - 3 = sqrt ( x + 12 ) - 3 sqrt ( x ) = sqrt ( x + 12 ) - 3 Square both sides : [ sqrt ( x ) ] ^ 2 = [ sqrt ( x + 12 ) ] ^ 2 - 2 * sqrt ( x + 12 ) * 3 + 3 ^ 2 x = x + 12 - 6 sqrt ( x + 12 ) + 9 x = x - ...

**Math**

Most useful form of straight-line equations is the "slope-intercept" form: y = m x + b This is called the slope-intercept form because "m" is the slope and "b" gives the y - intercept y - intercept = value of y when x = 0 In this case : y = x + 2 ...

**calculus**

x = first number y = second number x + y = 100 y = 100 - x P = x * y P = x * ( 100 - x ) P = 100 x - x ^ 2