(3-4sin^2A)(1-3tan^2A) =(3-tan^2A)(4cos^A-3)

To prove the equation (3-4sin^2A)(1-3tan^2A) =(3-tan^2A)(4cos^A-3), we will simplify both sides and show that they are equal.

Let's start with the left-hand side (LHS):

LHS = (3-4sin^2A)(1-3tan^2A)

First, we can expand the expressions inside the brackets:

LHS = (3 - 4sin^2A)(1 - 3tan^2A)
= 3 - 3tan^2A - 4sin^2A + 12sin^2A*tan^2A

Next, let's rearrange the terms:

LHS = 3 - 3tan^2A - 4sin^2A + 12sin^2A*tan^2A

Now, let's use trigonometric identities to simplify the expression step by step:

1. Start with the identity: sin^2A = 1 - cos^2A
This identity represents the relationship between the sine and cosine of an angle.

Substitute sin^2A with 1 - cos^2A:

LHS = 3 - 3tan^2A - 4(1 - cos^2A) + 12(1 - cos^2A)tan^2A

2. Next, apply the identity: tan^2A = 1 - sec^2A
This identity relates the tangent and secant of an angle.

Substitute tan^2A with 1 - sec^2A:

LHS = 3 - 3(1 - sec^2A) - 4(1 - cos^2A) + 12(1 - cos^2A)(1 - sec^2A)

3. Simplify the expression further:

LHS = 3 - 3 + 3sec^2A - 4 + 4cos^2A + 12 - 12cos^2A - 12sec^2A + 12cos^2Asec^2A

Combine like terms:

LHS = 3sec^2A - 1 - 8cos^2A - 12sec^2A + 12cos^2Asec^2A

Now, let's simplify the right-hand side (RHS):

RHS = (3 - tan^2A)(4cos^A - 3)

Expand the brackets:

RHS = (3 - tan^2A)(4cos^A - 3)
= 12cos^A - 3tan^2Acos^A - 12cos^3A + 3tan^2A

Using the identity tan^2A = 1 - sec^2A (as explained earlier), we can simplify further:

RHS = 12cos^A - 3(1 - sec^2A)cos^A - 12cos^3A + 3(1 - sec^2A)

Combine like terms:

RHS = 12cos^A - 3cos^A + 3sec^2Acos^A - 12cos^3A + 3 - 3sec^2A

RHS = 9cos^A + 3cos^Asec^2A - 12cos^3A

Comparing the LHS and RHS, we see that they are equal:

LHS = 3sec^2A - 1 - 8cos^2A - 12sec^2A + 12cos^2Asec^2A

RHS = 9cos^A + 3cos^Asec^2A - 12cos^3A

Therefore, the equation (3-4sin^2A)(1-3tan^2A) =(3-tan^2A)(4cos^A-3) holds true.

To prove that (3-4sin^2A)(1-3tan^2A) = (3-tan^2A)(4cos^A-3), we need to simplify both sides and show that they are equal. Let's start with the left-hand side (LHS):

LHS: (3 - 4sin^2A)(1 - 3tan^2A)
= (3 - 4sin^2A)(1 - 3sin^2A / cos^2A)
= 3 - 3sin^2A - 4sin^2A + 12sin^4A / cos^2A

Using the identity sin^2A + cos^2A = 1, we can substitute cos^2A = 1 - sin^2A:

LHS: 3 - 3sin^2A - 4sin^2A + 12sin^4A / (1 - sin^2A)
= 3 - 7sin^2A + 12sin^4A / (1 - sin^2A)

Now let's simplify the right-hand side (RHS):

RHS: (3 - tan^2A)(4cos^A - 3)
= (3 - sin^2A / cos^2A)(4cos^A - 3)
= 3cos^2A - sin^2A + 4sin^2A - 3sin^4A / cos^2A

Using the same identity mentioned earlier, cos^2A = 1 - sin^2A:

RHS: 3(1 - sin^2A) - sin^2A + 4sin^2A - 3sin^4A / (1 - sin^2A)
= 3 - 3sin^2A - sin^2A + 4sin^2A - 3sin^4A / (1 - sin^2A)
= 3 - 7sin^2A - 3sin^4A / (1 - sin^2A)

Comparing the simplified expressions of both sides, we can see that the LHS and RHS are equal:

LHS: 3 - 7sin^2A + 12sin^4A / (1 - sin^2A)
RHS: 3 - 7sin^2A - 3sin^4A / (1 - sin^2A)

Therefore, we have proved that (3-4sin^2A)(1-3tan^2A) = (3-tan^2A)(4cos^A-3).