show that :

cos(360*+x)-tan(180*-x)sin(360*-2x)cos(-x) divided by sin(90*+x)=cos2x

To show that

(cos(360°+x) - tan(180°-x)sin(360°-2x)cos(-x)) / sin(90°+x) = cos(2x),

we will use the trigonometric identities and properties step by step.

Step 1: Simplify the expression

Begin by simplifying the numerator:

cos(360°+x) - tan(180°-x)sin(360°-2x)cos(-x)

Using the trigonometric identity cos(-x) = cos(x) and the fact that cos(360°+x) = cos(x), we can rewrite the expression as:

cos(x) - tan(180°-x)sin(360°-2x)cos(x)

Step 2: Apply trigonometric identities

Now, let's apply the trigonometric identities to simplify the expression further:

cos(x) - [sin(180°-x) / cos(180°-x)] * sin(360°-2x) * cos(x)

Using the fact that sin(180°-x) = sin(x), cos(180°-x) = -cos(x), and sin(360°-2x) = sin(2x), we get:

cos(x) - [-sin(x) / -cos(x)] * sin(2x) * cos(x)

Simplifying further:

cos(x) + [sin(x) / cos(x)] * sin(2x) * cos(x)

Step 3: Cancel out common terms

Now let's cancel out common terms:

cos(x) + sin(x) * sin(2x)

Step 4: Apply trigonometric identity

Using the identity: sin(2x) = 2sin(x)cos(x), we can rewrite the expression as:

cos(x) + 2sin(x) * cos(x) * sin(x)

Step 5: Simplify the expression

Finally, let's simplify the expression further:

cos(x) + 2sin(x) * cos(x) * sin(x)

Using the identity: sin(x) * cos(x) = (1/2) * sin(2x), we can rewrite the expression as:

cos(x) + 2 * (1/2) * sin(2x) * sin(x)

Simplifying further:

cos(x) + sin(2x) * sin(x)

Now, let's apply the trigonometric identity: cos(x) + sin(a) * sin(b) = cos(a - b), where a = x and b = 2x:

cos(x) + sin(2x) * sin(x) = cos(x - 2x)

Simplifying:

cos(x - 2x) = cos(-x) = cos(x)

Therefore, we have shown that:

(cos(360°+x) - tan(180°-x)sin(360°-2x)cos(-x)) / sin(90°+x) = cos(2x)