# Calculus

posted by .

Verify the conditions for Rolle's Theorem for the function f(x)=x^2/(8x-15) on the interval [3,5] and find c in this interval such that f'(c)=0

I verified that f(a)=f(b) and calculated f'(x)= (8x^2 -30x)/64x^2 -240x +225)
But I'm having trouble finding c when that derivative is equal to 0.

## Similar Questions

1. ### calc

Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers c that satisfy the conclusion of Rolle's Theorem. f(x)= x sqrt(x+21) , [-21,0] If there is more than one solution …
2. ### calc

Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers "c" that satisfy the conclusion of Rolle's Theorem. f(x)=sin4pix , [-1/2,1/2] Well according to Rolle's Theorem, …

Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers "c" that satisfy the conclusion of Rolle's Theorem. f(x)=sin4pix , [-1/2,1/2] Well according to Rolle's Theorem, …
4. ### calculus

Verify that the hypotheses of Rolle’s Theorem are satisfied for f(x)=6cosx on the interval [9pi/2,11pi/2] and find all values of c in this interval that satisfy the conclusion of the theorem.
5. ### calculus

Show that the function f(x)=4x^3−15x^2+9x+8 satisfies the three hypotheses of Rolle’s theorem on the interval [0,3]. Then find the values of c on the interval [0,3] that are guaranteed by Rolle’s theorem. Give your answer …
6. ### Calculus

verify that the function satisfies the three hypotheses of rolle's theoreom on the given interval then find all numbers c that satisfy the conclusion of rolle's theorem. 1) 5-12x+3x^2 [1,3]
7. ### Calculus

1. Locate the absolute extrema of the function f(x)=cos(pi*x) on the closed interval [0,1/2]. 2. Determine whether Rolle's Theorem applied to the function f(x)=x^2+6x+8 on the closed interval[-4,-2]. If Rolle's Theorem can be applied, …
8. ### math

Verify that the function f(x)=x^3-6x^2+8x+4 satisfies the three hypotheses of Rolle's Theorem on the given interval [0,4]. Then find all numbers c that satisfy the conclusion of Rolle's Theorem
9. ### Calculus

Determine whether Rolle's Theorem can be applied to f on the closed interval [a,b]. If Rolle's Theorem can be applied, find all values of c in the open interval (a,b) such that f'(x)=0. f(x) = x^(2/3) - 1 [-8,8] I plugged in both values …
10. ### Calculus 1

Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers c that satisfy the conclusion of Rolle's Theorem. (Enter your answers as a comma-separated list.) f(x) = x^3−x^2−20x …

More Similar Questions