probability

posted by JuanPro

Consider a Poisson process with rate λ. Let N be the number of arrivals in (0,t] and M be the number of arrivals in (0,t+s], where t>0,s≥0.

In each part below, your answers will be algebraic expressions in terms of λ,t,s,m and/or n. Enter 'lambda' for λ and use 'exp()' for exponentials. Do not use 'fac()' or '!' for factorials. Follow standard notation.

For 0≤n≤m, the conditional PMF pM∣N(m∣n) of M given N is of the form ab! for suitable algebraic expressions in place of a and b.

For 0≤n≤m, the joint PMF pN,M(n,m) of N and M is of the form cn!d! for suitable algebraic expressions in place of c and d.

For 0≤n≤m, the conditional PMF pN|M(n|m) of N given M is of the form f⋅g!n!h! for suitable algebraic expressions in place of f, g, and h.

1. Mary

a = (lambda*s)^(m-n)*e^(-lambda*s)
b = m-n
c = lambda^m*s^(m-n)*t^n*e^(-lambda*(s+t))
d = m-n
f = (s^(m-n)*t^n)/((s+t)^m)
g = m
h = m-n
E[NM] = (lambda*t)*(lambda*s)+lambda*t+(lambda*t)^2

ALL CORRECT!!!

Similar Questions

1. math

THE MAXIMUM NUMBER OF CUSTOMERS ARRIVING DURING RANDOMLY CHOSEN 10-MIN INTERVALS IS 5 AT A DRIVE-IN FACILITY SPECIALIZING IN PHOTO DEVELOPMENT AND FILM SALES. IT HAS BEEN FOUND THE NUMBER OF ACTUAL SALES MADE FOLLOWS THE PROBABILITY …
2. stat

Problem 2. THE PROBABILITY THAT A RANDOMLY CHOSEN SALES PROSPECT WILL MAKE A PURCHASE IS 0.20. IF A SALESMAN CALLS ON SIX PROSPECTS, A. WHAT IS THE PROBABILITY THAT HE WILL MAKE EXACTLY FOUR SALES?

A busy restaurant determined that between 6:30 P.M. and 9:00 P.M. on Friday nights, the arrivals of customers are Poisson distributed with an average arrival rate of 4.32 per minute. What is the probability that at least 1 minute will …
4. probability

In parts 1, 3, 4, and 5 below, your answers will be algebraic expressions. Enter 'lambda' for λ and 'mu' for μ. Follow standard notation. Shuttles bound for Boston depart from New York every hour on the hour (e.g., at exactly …
5. probability

All ships travel at the same speed through a wide canal. Each ship takes t days to traverse the length of the canal. Eastbound ships (i.e., ships traveling east) arrive as a Poisson process with an arrival rate of λE ships per …
6. probability

lengths of the different pieces are independent, and the length of each piece is distributed according to the same PDF fX(x). Let R be the length of the piece that includes the dot. Determine the expected value of R in each of the …
7. Probability

In parts 1, 3, 4, and 5 below, your answers will be algebraic expressions. Enter 'lambda' for and 'mu' for . Follow standard notation. 1. Shuttles bound for Boston depart from New York every hour on the hour (e.g., at exactly one o'clock, …
8. Probability

In parts 1, 3, 4, and 5 below, your answers will be algebraic expressions. Enter 'lambda' for λ and 'mu' for μ. Follow standard notation. Shuttles bound for Boston depart from New York every hour on the hour (e.g., at exactly …
9. Probability

All ships travel at the same speed through a wide canal. Each ship takes t days to traverse the length of the canal. Eastbound ships (i.e., ships traveling east) arrive as a Poisson process with an arrival rate of λE ships per …
10. Probability

Consider a Poisson process with rate λ. Let N be the number of arrivals in (0,t] and M be the number of arrivals in (0,t+s], where t>0,s≥0. In each part below, your answers will be algebraic expressions in terms of λ,t,s,m …

More Similar Questions