MATH_URGENT
posted by RhUaNg .
The bases of trapezoid ABCD are \overline{AB} and \overline{CD}. Let P be the intersection of diagonals \overline{AC} and \overline{BD}. If the areas of triangles ABP and CDP are 8 and 18, respectively, then find the area of trapezoid ABCD.

what additional information is needed to prove triangle klm triagle pqr by sas?

Answer: 248

answer is 24
Respond to this Question
Similar Questions

Math
The bases of trapezoid ABCD are AB and CD. Let P be the intersection of diagonals AC and BD. If the areas of triangles ABP and CDP are 8 and 18, respectively, then find the area of trapezoid ABCD. 
math
The bases of trapezoid ABCD are \overline{AB} and \overline{CD}. Let P be the intersection of diagonals \overline{AC} and \overline{BD}. If the areas of triangles ABP and CDP are 8 and 18, respectively, then find the area of trapezoid … 
math, geometry
The bases of trapezoid ABCD are \overline{AB} and \overline{CD}. Let P be the intersection of diagonals \overline{AC} and \overline{BD}. If the areas of triangles ABP and CDP are 8 and 18, respectively, then find the area of trapezoid … 
math PLEASE HELP
The bases of trapezoid $ABCD$ are $\overline{AB}$ and $\overline{CD}$. Let $M$ be the midpoint of $\overline{AD}$. If the areas of triangles $ABM$ and $CDM$ are 5 and 17, respectively, then find the area of trapezoid $ABCD$. 
Math
The bases of trapezoid ABCD are AB and CD. Let P be the intersection of diagonals AC and BD. If the areas of triangles ABP and CDP are 8 and 18, respectively, then find the area of trapezoid ABCD. I'm so confused... please help! I … 
Math
The bases of trapezoid $ABCD$ are $\overline{AB}$ and $\overline{CD}$. We are given that $CD = 8$, $AD = BC = 7$, and $BD = 9$. Find the area of the trapezoid. 
GEOMETRY HELP PLEASE
The bases of trapezoid $ABCD$ are $\overline{AB}$ and $\overline{CD}$. We are given that $CD = 8$, $AD = BC = 7$, and $BD = 9$. Find the area of the trapezoid. 
Geometry
need help fast $M$ is the midpoint of $\overline{AB}$ and $N$ is the midpoint of $\overline{AC}$, and $T$ is the intersection of $\overline{BN}$ and $\overline{CM}$, as shown. If $\overline{BN}\perp\overline{AC}$, $BN = 12$, and $AC … 
Geometry
In trapezoid $ABCD$, $\overline{AB}$ is parallel to $\overline{CD}$, $AB = 7$ units, and $CD = 10$ units. Segment $EF$ is drawn parallel to $\overline{AB}$ with $E$ lying on $\overline{AD}$ and $F$ lying on $\overline{BC}$. If $BF:FC … 
geometry
The bases of trapezoid $ABCD$ are $\overline{AB}$ and $\overline{CD}$. We are given that $CD = 8$, $AD = BC = 7$, and $BD = 9$. Find the area of the trapezoid.