physics
posted by Tsion .
A uniform thin rod of length 0.55 m and mass 5.5 kg can rotate in a horizontal plane about a vertical axis through its center. The rod is a rest when a 3.0g bullet traveling in the horizontal plane of the rod is fired into one end of the rod. As viewed from above, the direction of the bullet velocity makes an angle of 60° with the rod. If the bullet lodges in the rod and the angular velocity of the rod is 11.0 rad/s immediately after the collision, what is the magnitude of the bullet's velocity just before impact?

angular momentum:
l=rmvsinQ
The rotational inertia on the rod:
I=ML^2/12
The parallelaxis theorem:
I=Irod+mr^2
Therefore:
rmvsinQ=(ML^2/12+mr^2)w
v=(5.5)(0.55)^2+(0.003)(0.275)^2(11.0)/(0.275)(0.003)sin(60.0)
v=25618.6 m/s
Respond to this Question
Similar Questions

AP Physics
A uniform thin rod of length 0.3m and mass 3.5kg can rotate in a horizontal plane about a vertical axis through its center. The rod is at rest when a 3g bullet traveling in the horizontal plane of the rod is fired into one end of the … 
physics
A bullet with mass m and a velocity of v is shot perpendicular to the edge of a uniform rod with length L and mass 4m which is free to move and rotate on a frictionless horizontal surface. The bullet is lodged into the rod and move … 
physics
Two 2.3 kg balls are attached to the ends of a thin rod of negligible mass, 65 cm in length. The rod is free to rotate in a vertical plane about a horizontal axis through its center. With the rod initially horizontal as shown, a 44 … 
Physics (please help!!!!)
A thin uniform rod (length = 1.3 m, mass = 4.1 kg) is pivoted about a horizontal frictionless pin through one of its ends. The moment of inertia of the rod through this axis is 1/3 m L2. The rod is released when it is 55° below the … 
Physics
A thin uniform rod (length = 1.3 m, mass = 3.2 kg) is pivoted about a horizontal frictionless pin through one of its ends. The moment of inertia of the rod through this axis is (1/3)mL2. The rod is released when it is 50° below the … 
Physics
A nonuniform 2.0kg rod is 2.0 m long. The rod is mounted to rotate freely about a horizontal axis perpendicular to the rod that passes through one end of the rod. The moment of inertia of the rod about this axis is 4.0 kg m2. The … 
physics
A thin nonuniform rod of length L=2.00 m and mass M=9.00 kg is free to pivot about an axis at one end. The CM of the rod is at a distance d=1.30 m from that end as illustrated below. The rod's moment of inertia about an axis through … 
Physics
A uniform rod of mass M and length d is initially at rest on a horizontal and frictionless table contained in the xy plane, the plane of the screen. The figure is a top view, gravity points into the screen. The rod is free to rotate … 
Physics
So, "a uniform steel rod of length 1.20 meters and mass 6.40 kg has attached to each end a small ball of mass 1.06 kg. The rod is constrained to rotate in a horizontal plane about a vertical axis through its midpoint." There's more … 
Physics
In the figure, a thin uniform rod of mass m = 3.05 kg and length L = 1.11 m rotates freely about a horizontal axis A that is perpendicular to the rod and passes through a point at a distance d = 0.201 m from the end of the rod. The …