Chemistry

posted by .

In the spectrum of a specific element, there is a line with a wavelength of 656 nm. Use the Rydberg equation to calculate the value of n for the higher energy Bohr orbit involved in the emission of this light. Assume the value for the lower energy orbit equals 2.

  • Chemistry -

    1/wavelength = R*(1/4 - 1/x^2)
    Convert wavelength to meters.
    You know R, the 1/4 is 1/2^2. X will be the higher orbit.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. chem

    λ for one line of the hydrogen spectrum is .4118 x 10-4 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 5. change the line spectrum to meters you know the equation is Et= Ef-Ei (i think …
  2. Chemistry

    calculate the wavelength of the second line in the Brackett series (nf=4) of the hydrogen emission spectrum. Rh= 2.180e-18 any help please?
  3. chemistry

    Atomic hydrogen produces well-known series of spectral lines in several regions of the electromagnetic spectrum. Each series fits the Rydberg equation with its own particular n sub 1 value. Calculate the value of n sub 1 (by trial …
  4. Chemistry

    I am so stuck on this problem: λ for one line of the hydrogen spectrum is .4118 x 10-4 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 5. I know 1/lambda = RH (1/n2 - 1/n2) 1/(.4118e-6 …
  5. Chem.

    λ for one line of the hydrogen spectrum is .4118 x 10-4 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 6.
  6. chemistry

    λ for one line of the hydrogen spectrum is .4118 x 10-4 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 6.
  7. Rydberg equation

    λ for one line of the hydrogen spectrum is .4118 x 10-4 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 6.
  8. Chemistry

    In the spectrum of a specific element, there is a line with a wavelength of 656 nm. Use the Rydberg equation to calculate the value of n for the higher energy Bohr orbit involved in the emission of this light. Assume the value for …
  9. Chemistry 1

    In the spectrum of a specific element, there is a line with a wavelength of 486 nm. Use the Rydberg equation to calculate the value of n for the higher energy Bohr orbit involved in the emission of this light. Assume the value for …
  10. Chemistry Help! (Rydberg Equation)

    a) According to the Rydberg equation, the line with the shortest wavelength in the emission spectrum of atomic hydrogen is predicted to lie at a wavelength (in nm) of _____ b) According to the Rydberg equation, the longest wavelength …

More Similar Questions