Physical Geography
posted by jorge .
Assume that a parcel of air is forced to rise up and over a 6000foot high mountain (shown below). The Initial temperature of the parcel at sea level is 76.5 F, and the lifting condensation level (LCL) of the parcel is 3000 feet. The DAR is 5.5 F/1000' and the SAR is 3.3 F/1000'. Assume the condensation begins at 100% relative humidity and that no evaporation takes place as the parcel descends. Indicate calculated temperatures to one decimal place.
1. Calculate the temp of the parcel at the following elevations as it rises up the windward side of the mountain
A 1000' ________________
B 3000' __________________
C 6000'__________________
2 after the parcel of air has descended dpwn the lee side of the mountain to sea level what is the temperature of the parcel?____________
why?_______________
5.One the winward side of the mountain, should the relative humidity of the parcel change as it rises from 3000 to 6000 feet?__________________
why_____________________
6. As the air rises up the windward side of the mountain
a what is the capacity (saturation mixing rate) of the rising air at 3000 feet?_____________________________g/kg
what is the capacity of the air at 6000 feet?________________________________g/kg
7. what is the capacity of the air after it descended back down to sea level on the lee side of the moutain? ____________
8. Assuming no water vapo is added as the parcel descends down the lee side of the mountain to sea, is the water vapor content (the mixing ration) of the parcel higher or lower than before it began to rise over the mountain?______________________
why_____________________
what is the lifting condensation level of this parcel now? ___________________________feet
Respond to this Question
Similar Questions

Science
Assume that a parcel of air is forced to rise up and over a 6000foothigh mountain (see page 79 in the Laboratory Manual). The initial temperature of the parcel at sea level is 76.5°F, and the lifting condensation level (LCL) of … 
Physical Geography PLEASE HELP!
Assume that a parcel of air is forced to rise up and over a 6000foothigh mountain. The initial temperature of the parcel at sea level is 76.5°F, and the lifting condensation level (LCL) of the parcel is 3000 feet. The DAR is 5.5°F/1000’ … 
Physical Geography
Assume that a parcel of air is forced to rise up and over a 6000foothigh mountain. The initial temperature of the parcel at sea level is 76.5°F, and the lifting condensation level (LCL) of the parcel is 3000 feet. The DAR is 5.5°F/1000’ … 
Physical Geography SOMEONE PLEASE HELP!
Assume that a parcel of air is forced to rise up and over a 6000foothigh mountain. The initial temperature of the parcel at sea level is 76.5°F, and the lifting condensation level (LCL) of the parcel is 3000 feet. The DAR is 5.5°F/1000’ … 
Physical Geography
Would someone please help me with this? Or at least tell me the formula I should be using? 
GEOGRAPHY
Assume that a parcel of air is forced to rise up and over a 6000foothigh mountain. The initial temperature of the parcel at sea level is 76.5°F, and the lifting condensation level (LCL) of the parcel is 3000 feet. The DAR is 5.5°F/1000’ … 
physical geoprahy
Assume that a parcel of air is forced to rise up and over a 6000foot high mountain (shown below). The Initial temperature of the parcel at sea level is 76.5 F, and the lifting condensation level (LCL) of the parcel is 3000 feet. The … 
Geography
I don't get any of it! Assume that a parcel of air is forced to rise up and over a 6000foothigh mountain (see page 79 in the Laboratory Manual). The initial temperature of the parcel at sea level is 76.5°F, and the lifting condensation … 
Science
Assume that a parcel of air is forced to rise up and over a 6000foot high mountain (shown below). The Initial temperature of the parcel at sea level is 76.5 F, and the lifting condensation level (LCL) of the parcel is 3000 feet. The … 
Geog
Would someone please help me with this? Or at least tell me the formula I should be using?