# Physics

posted by .

A ruler stands vertically against a wall. It is given a tiny impulse at θ=0∘ such that it starts falling down under the influence of gravity. You can consider that the initial angular velocity is very small so that ω(θ=0∘)=0. The ruler has mass m= 250 g and length l= 25 cm. Use g=10 m/s2 for the gravitational acceleration, and the ruler has a uniform mass distribution. Note that there is no friction whatsoever in this problem.

(a) What is the angular speed of the ruler ω when it is at an angle θ=30∘? (in radians/sec)

• Physics -

Apply conservation of energy as there is no friction.

• Physics -

Would i take it from the center of mass?

• Physics -

apply conservation of energy:
U=m*g*hcm
EK= 1/2*I*w^2, I=1/3*m*L^2

Eini= mg(L/2) + 0
Efin= mg(L/2)cos30 + 1/2*I*w^2
solve for Eini=Efin -> w=

any one knows how to aswer the other questions?

## Respond to this Question

 First Name School Subject Your Answer

## Similar Questions

1. ### Classical Mechanics Physics

A ruler stands vertically against a wall. It is given a tiny impulse at θ=0∘ such that it starts falling down under the influence of gravity. You can consider that the initial angular velocity is very small so that ω(θ=0∘)=0. …
2. ### Classical Mechanics Physics - Urgent help please

A ruler stands vertically against a wall. It is given a tiny impulse at θ=0∘ such that it starts falling down under the influence of gravity. You can consider that the initial angular velocity is very small so that ω(θ=0∘)=0. …
3. ### Physics - Please Help

A ruler stands vertically against a wall. It is given a tiny impulse at θ=0∘ such that it starts falling down under the influence of gravity. You can consider that the initial angular velocity is very small so that ω(θ=0∘)=0. …
4. ### Physics Classical Mechanics

A ruler stands vertically against a wall. It is given a tiny impulse at θ=0∘ such that it starts falling down under the influence of gravity. You can consider that the initial angular velocity is very small so that ω(θ=0∘)=0. …
5. ### PHYSICS(HELP!!)

A ruler stands vertically against a wall. It is given a tiny impulse at θ=0∘ such that it starts falling down under the influence of gravity. You can consider that the initial angular velocity is very small so that ω(θ=0∘)=0. …
6. ### physics(HELP)

A ruler stands vertically against a wall. It is given a tiny impulse at θ=0∘ such that it starts falling down under the influence of gravity. You can consider that the initial angular velocity is very small so that ω(θ=0∘)=0. …
7. ### PHYSICS URGENT DR BOB

A ruler stands vertically against a wall. It is given a tiny impulse at θ=0∘ such that it starts falling down under the influence of gravity. You can consider that the initial angular velocity is very small so that ω(θ=0∘)=0. …
8. ### PHYSICS!!! HELP

A ruler stands vertically against a wall. It is given a tiny impulse at θ=0∘ such that it starts falling down under the influence of gravity. You can consider that the initial angular velocity is very small so that ω(θ=0∘)=0. …
9. ### PHYSICS(ELENA

A ruler stands vertically against a wall. It is given a tiny impulse at θ=0∘ such that it starts falling down under the influence of gravity. You can consider that the initial angular velocity is very small so that ω(θ=0∘)=0. …
10. ### PHYSICS(HELP)

A ruler stands vertically against a wall. It is given a tiny impulse at θ=0∘ such that it starts falling down under the influence of gravity. You can consider that the initial angular velocity is very small so that ω(θ=0∘)=0. …

More Similar Questions