Math
posted by Anonymous .
I am having trouble with a precal problem. If you could explain how to do it that would be great!
((3^3)^(cosx+2/3sinx))^2cosx+3sinx all divided by ((3^sinx)^13)^cosx = x

I do not follow your order of exponents
You will have to be much more specific by using brackets
e.g.
2^3^4
done on my calculator by punching it in that way
gives me 4096
(The calculator appears to evaluate from left to right and simply does (2^3)^4 = 2^12= 4096
But, what about
(2^(3^{^4})
= 2^81
= huge !
on calculator , enter
2
y^{x}
(
3
y^{x}
4
)
=
to one humongous number (2.41... x 10^24)
Please clean up your expression
Respond to this Question
Similar Questions

Math
Verify the identity . (cscXcotX)^2=1cosX/1+cosX _______ sorry i cant help you (cscXcotX)=1/sinX  cosX/sinX = (1cosX)/sinX If you square this you have (1cosX)^2/(sinX)^2 Now use (sinX)^2 = 1  (cosX)^2 to get (1cosX)^2 / 1  … 
Trig
prove the identity (sinX)^6 +(cosX)^6= 1  3(sinX)^2 (cosX)^2 sinX^6= sinx^2 ^3 = (1cosX^2)^3 = (12CosX^2 + cos^4) (1cosX^2) then multiply that out 12CosX^2 + cos^4  cosX^2 + 2cos^4 cos^6 add that on the left to the cos^6, and … 
PreCalc
Trigonometric Identities Prove: (tanx + secx 1)/(tanx  secx + 1)= tanx + secx My work so far: (sinx/cosx + 1/cosx + cosx/cosx)/(sinx/cos x  1/cosx + cosx/cosx)= tanx + cosx (just working on the left side) ((sinx + 1  cosx)/cosx)/((sinx … 
Trig........
I need to prove that the following is true. Thanks (cosx / 1sinx ) = ( 1+sinx / cosx ) I recall this question causing all kinds of problems when I was still teaching. it requires a little "trick" L.S. =cosx/(1sinx) multiply top and … 
math
tanx+secx=2cosx (sinx/cosx)+ (1/cosx)=2cosx (sinx+1)/cosx =2cosx multiplying both sides by cosx sinx + 1 =2cos^2x sinx+1 = 2(1sin^2x) 2sin^2x + sinx1=0 (2sinx+1)(sinx1)=0 x=30 x=270 but if i plug 270 back into the original equation … 
Math  Pre Clac
Prove that each of these equations is an identity. A) (1 + sinx + cos x)/(1 + sinx + cosx)=(1 + cosx)/sinx B) (1 + sinx + cosx)/(1  sinx + cosx)= (1 + sin x)/cosx Please and thankyou! 
PreCal
Use the fundamental identities to simplify the expression. csc Q / sec Q so this would be 1/sinx / 1/cosx and then 1/sinx times cosx/1 = sin x cosx Is this correct so far? 
Trigonometry Check
Simplify #3: [cosxsin(90x)sinx]/[cosxcos(180x)tanx] = [cosx(sin90cosxcos90sinx)sinx]/[cosx(cos180cosx+sinx180sinx)tanx] = [cosx((1)cosx(0)sinx)sinx]/[cosx((1)cosx+(0)sinx)tanx] = [cosxcosxsinx]/[cosx+cosxtanx] = [cosx(1sinx]/[cosx(1+tanx] … 
Pre Calculus
Having trouble verifying this identity... cscxtanx + secx= 2cosx This is what I've been trying (1/sinx)(sinx/cosx) + secx = 2cosx (1/cosx)+(1/cosx) = 2 cosx 2 secx = 2cosx that's what i ended up with, but i know it's now right. did … 
Calculus
If y=3/(sinx+cosx) , find dy/dx A. 3sinx3cosx B. 3/(sinx+cosx)^2 C. 3/(sinx+cosx)^2 D. 3(cosxsinx)/(sinx+cosx)^2 E. 3(sinxcosx)/(1+2sinxcosx)