Calculus-Aproximate Areas

posted by Liz

Estimate the area under the graph of
f(x)=sin(pix) from x=0 to x=1 using the areas of 3 rectangles of equal width, with heights of the rectangles determined by the height of the curve a
a) left endpoint:
b) right endpoint:

1. Steve

A nice calculator for Riemann sums is at

http://mathworld.wolfram.com/RiemannSum.html

Similar Questions

1. Math

Estimate the are under the curve f(x)=x^2-4x+5 on [1,3]. Darw the graph and the midpoint rectangles using 8 partitions. Show how to calculate the estimated area by finding the sum of areas of the rectangles. Find the actual area under …
2. Math: Need Answer to study for a quizz. Help ASAP

Estimate the area under the curve f(x)=x^2-4x+5 on [1,3]. Darw the graph and the midpoint rectangles using 8 partitions. Show how to calculate the estimated area by finding the sum of areas of the rectangles. Find the actual area under …
3. calculus(Lab)

Well, first graph the graph of f(x)=-1/10x^2 + 3 2. We are going to approximate the area between f and the x-axis from x = 0 to x = 4 using rectangles (the method of Riemann sums). This is not the entire area in the first quadrant, …
4. Calculus

Estimate the area under the curve f(x)=x^2 between x=0 and x=1 using 4 rectangles of equal width if a) The height is taken from the right endpoint b) The height is taken from the midpoint. I have no idea what exactly this question …
5. Calculus-Approximate areas

Estimate the area under the graph of f(x)= x^2 + 3 x from x=1 to x=10 using the areas of 3 rectangles of equal width, with heights of the rectangles determined by the height of the curve at a) left endpoints: b) right endpoints:
6. Calculus-Aproximate Areas

Estimate the area under the graph of f(x)=sin(pix) from x=0 to x=1 using the areas of 3 rectangles of equal width, with heights of the rectangles determined by the height of the curve at a) left endpoint: b) right endpoint:
7. Calculus

a) Estimate the area under the graph of f(x)=7+4x^2 from x=-1 to x=2 using three rectangles and right endpoints. R3= ?