Calculus Practice Problems
posted by Amy .
The height of a triangle is increasing at a rate of 1 cm/min while the area of the triangle is increasing at a rate of 2 square cm/min. At what rate is the base of the triangle changing when the height is 7 centimeters and the area is 91 square centimeters?

Calculus Practice Problems 
Reiny
A = (1/2) b h
dA/dt = (1/2)(b dh/dt + h db/dt)
given: dA/dt = 2 , dh/dt = 1 , A = 91 , h = 7 ,
we need the base b,
from A = 1/2)bh
91 = (1/2)(7b)
182 = 7b
b = 26
2 = (1/2)(26(1) + 7db/dt)
4 = 23 + 7db/dt
db/dt = 19/7 cm/min
At that moment, the base is decreasing at 19/7 cm/min
Respond to this Question
Similar Questions

CAL
The altitude of a triangle is increasing at a rate of 2500 centimeters/minute while the area of the triangle is increasing at a rate of 4000 square centimeters/minute. At what rate is the base of the triangle changing when the altitude … 
CAL
The altitude of a triangle is increasing at a rate of 2500 centimeters/minute while the area of the triangle is increasing at a rate of 4000 square centimeters/minute. At what rate is the base of the triangle changing when the altitude … 
Calculus
The altitude of a triangle is increasing at a rate of 3000 centimeters/minute while the area of the triangle is increasing at a rate of 1500 square centimeters/minute. At what rate is the base of the triangle changing when the altitude … 
Math
The altitude of a triangle is increasing at a rate of 2500 centimeters/minute while the area of the triangle is increasing at a rate of 4500 square centimeters/minute. At what rate is the base of the triangle changing when the altitude … 
calculus
The altitude of a triangle is increasing at a rate of 3.000 centimeters/minute while the area of the triangle is increasing at a rate of 2.500 square centimeters/minute. At what rate is the base of the triangle changing when the altitude … 
Math calculus
The altitude of a triangle is increasing at a rate of 1000 centimeters/minute while the area of the triangle is increasing at a rate of 1500 square centimeters/minute. At what rate is the base of the triangle changing when the altitude … 
Calculus Please help!
The altitude of a triangle is increasing at a rate of 2500 centimeters/minute while the area of the triangle is increasing at a rate of 3500 square centimeters/minute. At what rate is the base of the triangle changing when the altitude … 
Calculus
The altitude (i.e., height) of a triangle is increasing at a rate of 2 cm/minute while the area of the triangle is increasing at a rate of 4 square cm/minute. At what rate is the base of the triangle changing when the altitude is 10.5 … 
calculus rates
The altitude (i.e., height) of a triangle is increasing at a rate of 2 cm/minute while the area of the triangle is increasing at a rate of 4 square cm/minute. At what rate is the base of the triangle changing when the altitude is 10.5 … 
Calculus
The base of a triangle is decreasing at the rate of 2 cm/ min and the height is increasing at the rate of 1cm/ min. Find the rate at which the area is changing when the base is 8 cm and the height is 6 cm. Is the area increasing or …