Math
posted by Cory .
Use the linear approximation (1+x)^k=1+kx to find an approximation for the function (3+3x)^(1/3) for values of x near zero.
Help would be greatly appreciated!
Respond to this Question
Similar Questions

calculus
Use the linearization approximation (1+x)^k=1+kx to find an approximation for the function f(x)=(1/square root of 4+x) for values of x near zero. 
calculus
Use the linearization approximation (1+x)^k=1+kx to find an approximation for the function f(x)=(1/square root of 4+x) for values of x near zero. 
calculus
Use the linear approximation (1+x)^k=1+kx to find an approximation for the function f(x)=1/square root of (4+x) for values of x near zero. 
Calculus
(a) Find the tangent line approximation for sqrt(9+x) near x=0. (b)Find a formula for the error, E(x),in the tangent line approximation found in part (a). For part A, is the answer y=3. For part b, I don't understand , any help would … 
Math (linear approximation)
Find a linear approximation of the function f(x)=(1+x)^(1/4) at a=1, and use it to approximate the numbers (.95)^(1/4) and (1.1)^(1/4). Round your answers to the nearest thousandth Cheers in advance! 
Calculus
Given that f is a differentiable function with f(2,5) = 6, fx(2,5) = 1, and fy(2,5) = 1, use a linear approximation to estimate f(2.2,4.9). The answer is supposed to be 6.3. Here's what I've done so far: L(x,y) = f(2,5) + fx(2,5)(x) … 
Calculus
Use the linear approximation (1+x)^k\approx 1+kx to find an approximation for the function f(x) for values of x near zero. I need help for (3+3x)^(1/3). Please help me! 
linear approximation
a) Find the linear approximation of the function f(x)=4cos(3x^2) near x = 0 b) Use the approximation found in part (a) to estimate the value of f(pi/20) 
calc
For each function below find the best linear approximation (linearization) at the given value. f(x) = x^1 at x = 2 y = 1/2 f ' (x) = 1x^2 at x = 2 : 1/4 y  1/2 = 1/4 (x2) y  1/2 = 1/4x + 1/2 y = 1/4x + 1 Use the appropriate … 
Math  Linear Approximation
a) Find a linear approximation of y=sinx at x=pi/6 b) use part (a) to approximate sin(61pi/360) and sin(59pi/360) I just really have no idea how to approach this problem. I know the formula is y=f(a)+f'(a)(xa). Does that mean it would …