pre calc
posted by bethany .
An open box is formedby cutting squares out of a peice of cardboard that is 18 feet by 26 feet and folding up the flaps. What size corner squares should be cut to yield a box that has a volume of 250 cubic feet

pre calc 
Steve
If the corners are x on a side, then
v = x(182x)(262x) = 250
x = 0.6,7.485,13.9
Of these only the two smaller values can be used.
Respond to this Question
Similar Questions

algebra
An opentop box is to be constructed from a 6 foot by 8 foot rectangular cardboard by cutting out equal squares at each corner and the folding up the flaps. Let x denote the length of each side of the square to be cut out. a) 
math
An opentop box is to be constructed from a 6 foot by 8 foot rectangular cardboard by cutting out equal squares at each corner and the folding up the flaps. Let x denote the length of each side of the square to be cut out. a) 
PRECALCULUS
AN OPEN BOX IS FORMED BY CUTTING SQUARES OUT OF A PIECE OF CARDBOARD THAT IS 16 FT BY 19 FT AND FOLDING UP THE FLAPS. WHAT SIZE CORNER SQUARES SHOULD BE CUT TO YEILD A BOX THAT HAS A VOLUME OF 175 CUBIC FEET 
PreCalc
I am having a great deal of difficulty with this problem. An open box is formed by cutting squares out of a piece of cardboard that is 16 ft by 19 ft and folding up the flaps. a. what size corner squares should be cut to yield a box … 
PreCalc
An open box is formed by cutting squares out of a piece of cardboard that is 22 ft by 27 ft and folding up the flaps. What size corner squares should be cut to yield a box that has a volume of less than 235 cubic feet? 
Calculus
A SHEET OF CARDBOARD 180 INCHES SQUARE IS USED to make an open box by cutting squares of equal size from the corners and folding up the sides, what size squares should be cut to obtain a box with the largest possible volume? 
calc
by cutting away identical squares from each corner of a rectangular piece of cardboard and folding up the resulting flaps, the cardboard may be turned into an open box. if the cardboard is 16 inches long and 10 inches wide, find the … 
calculus
By cutting away identical squares from each corner of a rectangular piece of cardboard and folding up the resulting flaps, an open box may be made. If the cardboard is 14 in. long and 6 in. wide, find the dimensions of the box that … 
calculus optimization problem
by cutting away identical squares from each corner of a rectangular piece of cardboard and folding up the resulting flaps, an open box may be made. if the cardboard is 30 inches long and 14 inches wide find the dimensions of the box … 
Calculus
By cutting away identical squares from each corner of a rectangular piece of cardboard and folding up the resulting flaps, an open box may be made. If the cardboard is 16 in. long and 10 in. wide, find the dimensions of the box that …