# trig

posted by .

use basic identities to simplify the expression.

csc θ cot θ / sec θ

• trig -

Convert all three functions in terms of sine and cosine, hence simplify.

## Similar Questions

1. ### Math- Simplifying Identities

1.) cot(-θ)(secθ) I think the answer is secθ but I don't know how to get this. 2.) (tanθ) / (cos)(90° -θ) 3.) 3sin2xcos2x - sin4x 4.) (cosx + tanx) / (csc^2 x)
2. ### Trig

Write the following in terms of sin(θ) and cos(θ); then simplify if possible. csc(θ) - cot(θ)cos(θ) =
3. ### trig

The terminal side of θ lies on a given line in the specified quadrant. Find the values of the six trigonometric functions of θ by finding a point on the line. Line: (55/48)x Quadrant:III sin(θ)= cos(θ)= tan(θ)= …
4. ### Trigonometry

Verify the identities. 1.) SIN[(π/2)-X]/COS[(π/2)-X]=COT X 2.) SEC(-X)/CSC(-X)= -TAN X 3.) (1 + SIN Y)[1 + SIN(-Y)]= COS²Y 4.) 1 + CSC(-θ)/COS(-θ) + COT(-θ)= SEC θ (Note: Just relax through verifying/solving …
5. ### Trigonometry

Verify the identities. 1.) √1-COSθ/1+COSθ= 1+SINθ/SINθ 2.) SEC X SIN(π/2-X)= 1 3.) CSC X(CSC X-SIN X)+SIN X-COS X/SIN X + COT X= CSC²X 4.) CSC^4 X-2 CSC²X+1= COT^4 X 5.) CSC^4 θ-COT^4 θ= 2 …
6. ### trig

Use the fundamental identities to simplify the expression. cos^2θ/sin^2θ+cscθsinθ I got tan^2theta
7. ### Trig

Given that csc θ = -4 and tan θ > 0, find the exact value of a. x b. sin θ c. cos θ d. r e. sec θ f. cot θ
8. ### Precalc/Trig

Sorry there are quite a few problems, but I just need to know if these are correct (and if they aren't, where I went wrong): 1. Solve these equations. tanθ = -√3 θ = 2π/3 + kπ θ = 5π/3 + kπ …
9. ### trigonometry

Verify that sec(θ)/csc(θ)-cot(θ) - sec(θ)/csc(θ)-cot(θ) = 2csc(θ) is an identity. can some help me through this?