Post a New Question

math

posted by .

For every positive integer n, consider all monic polynomials f(x) with integer coefficients, such that for some real number a
x(f(x+a)−f(x))=nf(x)
Find the largest possible number of such polynomials f(x) for a fixed n<1000.
Details and assumptions
A polynomial is monic if its leading coefficient is 1. For example, the polynomial x3+3x−5 is monic but the polynomial −x4+2x3−6 is not.

  • math -

    500

  • math -

    Alestair no point posting wrong answers. Anyways stop posting brilliant problems. Anyways since the live period is over, here is a hint: show that for a fixed n the number of polynomials is the number of divisors of n.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. MATHS

    Find the largest possible integer n such that there exists a non-constant quadratic polynomial f(x) with integer coefficients satisfying f(1)∣f(2),f(2)∣f(3),…f(n−1)∣f(n). Details and assumptions For (possibly …
  2. math

    For every prime p consider all polynomials f(x) with integer coefficients from 1 to p and degree at most p−1, such that for all integers x the number f(2x)−f(x) is divisible by p. Find the sum of all primes p<1000 such …
  3. math

    For every prime p consider all polynomials f(x) with integer coefficients from 1 to p and degree at most p−1, such that for all integers x the number f(2x)−f(x) is divisible by p. Find the sum of all primes p<1000 such …
  4. heeeeeelp math

    For every positive integer n, consider all polynomials f(x) with integer coefficients, such that for some real number a x*(f(x+a)−f(x))=n*f(x) Find the largest possible number of such polynomials f(x) for a fixed n<1000?
  5. Math (algebra)

    For every positive integer n, consider all monic polynomials f(x) with integer coefficients, such that for some real number a x(f(x+a)−f(x))=nf(x) Find the largest possible number of such polynomials f(x) for a fixed n<1000.
  6. heeeelp math

    Find the number of polynomials f(x) that satisfy all of the following conditions: f(x) is a monic polynomial, f(x) has degree 1000, f(x) has integer coefficients, f(x) divides f(2x^3+x)
  7. heeeeeeeeelp math

    For every positive integer n consider all polynomials f(x) with integer coefficients, such that for some real number a *x(f(x+a)−f(x))=n*f(x) Find the largest possible number of such polynomials f(x) for a fixed n<1000?
  8. heeelp math2

    Find the number of polynomials f(x) that satisfy all of the following conditions: f(x) is a monic polynomial, f(x) has degree 1000, f(x) has integer coefficients, f(x) divides f(2x^3+x)
  9. heeeeeeelp math3

    For every positive integer n consider all polynomials f(x) with integer coefficients, such that for some real number a *x(f(x+a)−f(x))=n*f(x) Find the largest possible number of such polynomials f(x) for a fixed n<1000?
  10. heeeeeeelp math

    For every positive integer n, consider all monic polynomials f(x) with integer coefficients, such that for some real number a x(f(x+a)−f(x))=nf(x) Find the largest possible number of such polynomials f(x) for a fixed n<1000.

More Similar Questions

Post a New Question