# Computer proof

posted by .

Prove by induction on all positive integer k that if m is any ordinary nfa with k states, and m has fewer than k - 1 transitions, then there exists a state of m that is not reachable.

Let N be the λ-NFA: "L" for "λ"
b
>(1) -----> ((2))
| ^. |
b| | L. | a
V |. V
(3) <------ (4)
L
Prove by induction for all natural number I that the string b(ab)^i is in the language L(N)

• Computer proof -

The graph did not come out but it is a square with b from >(1) -> ((2)) and >(1) -> (3) and L from (4) -> (3) and (3) -> >(1) and a from ((2)) -> (4)

## Similar Questions

1. ### discrete math

1)prove that if x is rational and x not equal to 0, then 1/x is rational. 2) prove that there is a positive integers that equals the sum of the positive integers not exceeding it. Is your proof constructive or nonconstructive?
2. ### discrete math

Could someone help me with this induction proof. I know its true. given then any integer m is less than or equal to 2, is it possible to find a sequence of m-1 consecutive positive integers none of which is prime?
3. ### Discrete Math

1. Assume that n is a positive integer. Use the proof by contradiction method to prove: If 7n + 4 is an even integer then n is an even integer. 2. Prove: n is an even integer iff 7n + 4 is an even integer. (Note this is an if and only …
4. ### computer sciece(Computation Theory)

Find the error in the following proof that all horses are the same color. CLAIM: In any set of h horses, all horses are the same color. PROOF: By induction on h. Basis: For h = 1. In any set containing just one horse, all horses clearly …
5. ### Math - Mathematical Induction

3. Prove by induction that∑_(r=1)^n▒〖r(r+4)=1/6 n(n+1)(2n+13)〗. 5. It is given that u_1=1 and u_(n+1)=3u_n+2n-2 where n is a positive integer. Prove, by induction, that u_n=3^n/2-n+1/2. 14. The rth term of …
6. ### AP Calc

Use mathematical induction to prove that the statement holds for all positive integers. Also, can you label the basis, hypothesis, and induction step in each problem. Thanks 1. 2+4+6+...+2n=n^2+n 2. 8+10+12+...+(2n+6)=n^2+7n
7. ### Calculus

Use mathematical induction to prove that the statement holds for all positive integers. Also, label the basis, hypothesis, and induction step. 1 + 5 + 9 + … + (4n -3)= n(2n-1)
8. ### Mathematical induction. I'm stuck. So far I have..

For all integers n ≥ 1, prove the following statement using mathematical induction. 1+2^1 +2^2 +...+2^n = 2^(n+1) −1 Here's what I have so far 1. Prove the base step let n=1 2^1=2^(1+1)-1 False. Someone else suggested that …
9. ### pre calc

Use mathematical induction to prove that the statement is true for every positive integer n. Show your work. 2 is a factor of n2 - n + 2
10. ### pre calc

Use mathematical induction to prove that the statement is true for every positive integer n. Show your work. 2 is a factor of n2 - n + 2

More Similar Questions