Respond to this Question
Similar Questions

Confused! PreCal
Verify that each equation is an identity.. tan A= sec a/csca I have notes (i wasn't here that day and teacher refuses to reteach) but I don't understand them here is the notes... Problem w/ same directions: Cos x= cotx/csc x = Cosx/Sin … 
Trigonometry.
( tanx/1cotx )+ (cotx/1tanx)= (1+secxcscx) Good one! Generally these are done by changing everything to sines and cosines, unless you see some obvious identities. Also generally, it is best to start with the more complicated side … 
Trigonometry Check
Simplify #3: [cosxsin(90x)sinx]/[cosxcos(180x)tanx] = [cosx(sin90cosxcos90sinx)sinx]/[cosx(cos180cosx+sinx180sinx)tanx] = [cosx((1)cosx(0)sinx)sinx]/[cosx((1)cosx+(0)sinx)tanx] = [cosxcosxsinx]/[cosx+cosxtanx] = [cosx(1sinx]/[cosx(1+tanx] … 
Precal
Verify the identity: sin^(1/2)x*cosx  sin^(5/2)*cosx = cos^3x sq root sin x I honestly have no clue how to approach the sin^(5/2)*cosx part of the equation 
Trigonometry
Prove the following trigonometric identities. please give a detailed answer because I don't understand this at all. a. sin(x)tan(x)=cos(x)/cot^2 (x) b. (1+tanx)^2=sec^2 (x)+2tan(x) c. 1/sin(x) + 1/cos(x) = (cosx+sinx)(secx)(cscx) d. … 
Precalculus/Trig
I can't seem to prove these trig identities and would really appreciate help: 1. cosx + 1/sin^3x = cscx/1  cosx I changed the 1: cosx/sin^3x + sin^3x/sin^3x = cscx/1cosx Simplified: cosx + sin^3x/sin^3x = cscx/1cosx I don't know … 
Math Help
Hi! Okay so we just learned this last week and I completely lost on what to do. These are some warm up problems we did in class but I still don't know how to do them? 
Calculus 2 Trigonometric Substitution
I'm working this problem: ∫ [1tan^2 (x)] / [sec^2 (x)] dx ∫(1/secx)[(sin^2x/cos^2x)/(1/cosx) ∫cosxsinx(sinx/cosx) ∫cosx∫sin^2(x)/cosx sinx∫(1cos^2(x))/cosx sinx∫(1/cosx)cosx sinx∫secx∫cosx … 
Trig Identities
Prove the following identities: 13. tan(x) + sec(x) = (cos(x)) / (1sin(x)) *Sorry for any confusing parenthesis.* My work: I simplified the left side to a. ((sinx) / (cosx)) + (1 / cosx) , then b. (sinx + 1) / cosx = (cos(x)) / (1sin(x)) … 
math
verify for sqrt(1cosx)= sin/sqrt(1+cosx). I multiplied the right side by sqrt(1cosx) and got sqrt(1cosx)= sin*sqrt(1cosx), but I don't know what to do with the sin.