CALC

posted by .

Determine the maximum and minimum of each function on the given interval.
a)  = 2x^3 − 9x^2 ,−2 ≤ x ≤ 4
b)  = 12x − x^3 ,  x∈ [−3,5]

• CALC -

I will do the first one, you do the second in the same way

a) y = 2x^3 - 9x^2 , -2 ≤ x ≤ 4

dy/dx = 6x^2 - 18x
= 0 for a max/min
6x(x-3) = 0
x = 0 or x = 3, both are within our given domain

if x = 0 , y = 0
if x = 3 , y = 56 - 81 = -27

so the max is 0 and the min is -27

• CALC -

should have checked the end points
if x = -2 , y = -16 - 36 = -52
if x = 4 , y = -16

the max is 0 and the min is -52 within the given domain.

Similar Questions

1. Math

f(x) = {−8 if −3 ≤ x ≤ 0 {x if 0 < x ≤ 3 Evaluate the given expressions. a)f(-1)= b)f(0)= (^Teach how to do this.) Duplicate the graphs. What is the formula?
2. Math: Pre Cal

f(x) = {−8 if −3 ≤ x ≤ 0 {x if 0 < x ≤ 3 Evaluate the given expressions. a)f(-1)= b)f(0)= (^Teach how to do this.) What is the formula?
3. Calculus

If m ≤ f(x) ≤ M for a ≤ x ≤ b, where m is the absolute minimum and M is the absolute maximum of f on the interval [a, b], then m(b − a) ≤ b f(x) dx a≤ M(b − a). Use this property to estimate …

Determine the maximum and minimum of each function on the given interval. a)  = 2x^3 − 9x^2 ,−2 ≤ x ≤ 4 b)  = 12x − x^3 ,  x∈ [−3,5]
5. calculus

Determine the maximum and minimum of each function on the given interval. a)  = 2x^3 − 9x^2 ,−2 ≤ x ≤ 4 b)  = 12x − x^3 ,  x∈ [−3,5]

Determine the absolute extrema of each function on the given interval. Illustrate your results by sketching the graph of each function. a) f(x) = x^2 − 4x + 3 , 0 ≤ x ≤ 3 b) f(x) = (x − 1)^2 …
7. calculus

Determine the maximum and minimum of each function on the given interval. a)  = 2x^3 − 9x^2 ,−2 ≤ x ≤ 4 b)  = 12x − x^3 ,  x∈ [−3,5]