calculus
posted by harry .
Find the particular solution of the following differential equation by using the given boundary conditions.
y(1+x)=x(y+1)(dy/dx) when y=1 x=1
Respond to this Question
Similar Questions

calculusdifferential equation
Consider the differential equation: (du/dt)=u^2(t^3t) a) Find the general solution to the above differential equation. (Write the answer in a form such that its numerator is 1 and its integration constant is C). u=? 
calculus
consider the differential equation dy/dx= (y  1)/ x squared where x not = 0 a) find the particular solution y= f(x) to the differential equation with the initial condition f(2)=0 (b)for the particular solution y = F(x) described in … 
calculus
Sorry to post this again, but I am still unable to understand it and need help. Please help.1) Using 3(x3)(x^26x+23)^2 as the answer to differentiating f(x)=(x^26x+23)^3/2, which I have been able to do, I need to find the general … 
Calculus!!
Consider the differential equation given by dy/dx = xy/2. A. Let y=f(x) be the particular solution to the given differential equation with the initial condition. Based on the slope field, how does the value of f(0.2) compare to f(0)? 
Calculus
find the particular solution of the differential equation that satisfies the conditions: f''(x)=sin(x)+e^(2x) f(0)=1/4, f'(0)=1/2 
Calculus
Find the particular solution that satisfies the differential equation and the initial conditions. f''(x) = x^2 f'(0) = 8, f(o)=4 f'(t) 10t  12t^3, f(3) =2 
Calculus
Find the particular solution that satisfies the differential equation and the initial conditions. F'(x) = 4x^2 f (1)=3 F'(t)=10t12t^3 f (3)=2 
calculusadd
(2y1)dy/dx=(3x^2+1) given that x=1 when y=2 plz show step thanks 2) (a)find the general solution of the equation (x2)dy/dx+3y(x1)/(x+1)=1 b)given the boundary condition y=5 when x=1,find the particular solution of the condition … 
Differential equations,Calculus
So I have the following differential equation. The general solution I have is: t=k(1/r)+c I now need to find the particular solution when t=0 and the radius (r) = 1cm. So k is a constant which is approx 3.9 (5/4pi) So for the particular … 
Calculus
Consider the differential equation dy/dx = x^4(y  2). Find the particular solution y = f(x) to the given differential equation with the initial condition f(0) = 0. Is this y=e^(x^5/5)+4?