Algebra

posted by .

The value of y that minimizes the sum of the two distances from (3,5) to (1,y) and from (1,y) to (4,9) can be written as \frac{a}{b} where a and b are coprime positive integers. Find a + b

  • Algebra -

    d = √(4+(y-5)^2) + √(9+(y-9)^2)
    dd/dy = (y-5)/√(4+(y-5)^2) + (y-9)/√(9+(y-9)^2)
    = [(y-9)√(4+(y-5)^2) + (y-5)√(9+(y-9)^2)]/(√(4+(y-5)^2) * √(9+(y-9)^2))
    dd/dy=0 when
    (y-9)√(4+(y-5)^2) + (y-5)√(9+(y-9)^2) = 0

    y = 33/5
    a+b=38

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Math

    Let S(n) denote the sum of digits of the integer n. Over all positive integers, the minimum and maximum values of S(n)/S(5n) are X and Y, respectively. The value of X+Y can be written as a/b , where a and b are coprime positive integers. …
  2. Calulus

    Given \displaystyle \int_0^{\frac{3\pi}{2}} x^2\cos x \, dx = a - \frac{b\pi^2}{c}, where a, b and c are positive integers and b and c are coprime, what is the value of a + b + c?
  3. algebra

    Given the system of equations x(x+y)=9 y(x+y)=16 the value of xy can be written as a/b where a and b are positive coprime integers. Find a+b.
  4. Algebra

    Given the system of equations \begin{cases} x(x+y) &=& 9 \\ y(x+y) &=& 16 \end{cases} the value of xy can be written as \frac{a}{b} where a and b are positive coprime integers. Find a+b.
  5. Algebra

    Joe picks 2 distinct numbers from the set of the first 14 positive integers S = \{1,2,3,\ldots,14\}. The probability that the sum of the 2 numbers is divisible by 3 can be expressed as \frac{a}{b}, where a and b are coprime positive …
  6. Calculus

    Given f(x) = \frac{x^3-2x+5}{x+4} and f’(3) = \frac{a}{b}, where a and b are coprime positive integers, what is the value of a+b?
  7. Trigonometry

    Let N be a 5-digit palindrome. The probability that N is divisible by 4 can be expressed as \frac{a}{b}, where a and b are coprime positive integers. What is the value of a+b?
  8. Geometry

    The value of y that minimizes the sum of the two distances from (3,5) to (1,y) and from (1,y) to (4,9) can be written as \frac{a}{b} where a and b are coprime positive integers. Find a + b
  9. Maths

    The value of y that minimizes the sum of the two distances from (3,5) to (1,y) and from (1,y) to (4,9) can be written as a/b where a and b are coprime positive integers. Find a + b.
  10. Geometry

    The value of y that minimizes the sum of the two distances from (3,5) to (1,y) and from (1,y) to (4,9) can be written as \frac{a}{b} where a and b are coprime positive integers. Find a + b.

More Similar Questions