Trigonometry
posted by stranger .
Every point (x,y) on the curve y=log(3x)/log2 is transferred to a new point by the following translation (x′,y′)=(x−m,y−n), where m and n are integers. The set of (x′,y′) form the curve y=log(12x−96)/log2. What is the value of m+n?
Details
that is log base 2 which i expressed in base 10

since log(12x96)
= log(12*(x8))
= log12 + log(x8)
the translation is (8,log12)
using logs base 2 
can you please explain what this question means

Why are you asking Brilliant questions here. The answers will be posted here next week.
adf.ly/Lhdg7
Respond to this Question
Similar Questions

PHY 2054
Use the relativistic coordinate transformation (x, y, z, t) − (x′, y′, z′, t′) shown and given below where the latter frame S′, (x′, y′, z′, t′), has a velocity 2.69813 × … 
College Physics
Use the relativistic coordinate transformation (x, y, z, t) − (x′, y′, z′, t′) shown and given below where the latter frame S′, (x′, y′, z′, t′), has a velocity 2.69813 × … 
calculus
Consider the interval I=[6,7.6]. Break I into four subintervals of length 0.4, namely the four subintervals [6,6.4],[6.4,6.8],[6.8,7.2],[7.2,7.6]. Suppose that f(6)=19, f′(6)=0, f′(6.4)=−0.5, f′(6.8)=−0.1, … 
Math
Every point (x,y) on the curve y=log23x is transferred to a new point by the following translation (x′,y′)=(x+m,y+n), where m and n are integers. The set of (x′,y′) form the curve y=log2(12x−96). What … 
calculus (point me in the right direction please?)
f(x) and f′(x) are continuous, differentiable functions that satisfy f(x)=x^3+4x^2+∫(from 0 to x)(x−t)f′(t) dt. What is f′(5)−f(5)? 
calculus
f(x) and f′(x) are continuous, differentiable functions that satisfy f(x)=x^3+4x^2+∫ (from 0 to x)(x−t)f′(t) dt. What is f′(5)−f(5)? 
MathsCalculus
If f(2)=1 and f(2+h)=(h+1)3, compute f′(2). If f(−1)=5 and f(−0.9)=5.2, estimate f′(−1). If the line y=−3x+2 is tangent to f(x) at x=−4, find f(−4). Your answer should be expressed as … 
Urgent Calculus Help
Let H(x)=F(G(x)) and J(x)=F(x)/G(x). Suppose F(7)=4, F′(7)=−8 G(7)=3, G′(7)=−5 G(2)=7, G′(2)=−2 then H′(2)= J′(7)= 
physics
Consider the two observers O and O′ at the origins of the frames of reference S and S′ respectively, which are in relative motion at constant velocity v along the xaxis as illustrated in figure TMA 1_Fig1. Suppose the … 
calculus
F.(0) (10 puntos posibles) C1 What is limh→0cos(π6+h)−cos(π6)h?