Calculus 2
posted by Tom .
Hello,
I don't know what test to use for this series:
Determine the sum of the following series:
inf E n=1 (2^n + 9^n) / 12^n
thank you!
Respond to this Question
Similar Questions

CALC II
Determine the convergence of the following series using the nthpartial sum or geometric series formula. The sum of n=1 to inifitiy 1/(9n^2+3n2) How do I start? 
calculus
determine if the series is absolutely convergent and convergent the sum from n=1 to infinity of sin(n^2)/n^2 what series test should I use and how? 
College Calculus
Suppose the series An (from n=1 to INF) is known to be convergent. Prove that series 1/(An) (from n=1 to INF) is a divergent series. I have no idea what to do... please help! 
College Calculus (Binomial Series)
Expand f(x) = (x+x^2)/((1x)^3) as a power series and use it to find the sum of series (SUM from n=1 to infinity) (n^2)/(2^n) PLEASE HELP. 
calculus
Consider the infinite series of the form: (+/)3(+/)1(+/)(1/3)(+/)(1/9)(+/)(1/27)(+/)...(+/)(1/3^n)(+/)... (A) Find x and y from: x(</=)(+/)3(+/)1(+/)(1/3)(+/)...(</=)y. (B) Can you choose the signs to make the series … 
Calc II
Use the comparison or limit comparison test to decide if the following series converge. Series from n=1 to infinity of (4sin n) / ((n^2)+1) and the series from n=1 to infinity of (4sin n) / ((2^n) +1). For each series which converges, … 
Calculus
Determine the following about the series. Indicate the test that was used and justify your answer. Sigma (lower index n = 1; upper index infinity) [sin((2n1)pi/2)]/n A. The series diverges B. The series converges conditionally. C. … 
CALC 2
a. Consider the following limit as a fact: lim n> infinity ((n!)^1/n)/n = 1/e Use this limit to study the convergence of this series using the root test. Sum of infinity and n=1 of ((3^n)n!)/n^n b. Use the ratio or the root test … 
calculus
in the following series x is a real number. In each case use the ratio test to determine the radius of convergence of the series. Analyze the behavior of the series at the endpoints in order to determine the interval of convergence. … 
PreCalculus
Q.Determine the sum of each infinite geometric series. t_1= 8 r = 2^1/2  A.This is a divergent series because the absolute value of r is greater than 1.  …