# math

posted by .

Prove:

3/(log_2 (a)) - 2/(log_4 (a)) = 1/(log_(1/2)(a))

• math -

3/(log_2 (a)) - 2/(log_4 (a)) = 1/(log_(1/2)(a))

since 4 = 2^2, log_4(a) = 1/2 log_2(a)
since 1/2 = 2^-1, log_(1/2)(a) = -log_2(a)

so, if we let x = log_2(a), we have

3/x - 2/(x/2) = 1/(-x)
3/x - 4/x = -1/x
(4-3)/x = -1/x
1/x = -1/x
???

Is there a typo somewhere ?

• math -

i.imgur[dot]com/hE0sWBt[dot]gif

• math -

Make sure its just like that, it has to be solvable o.o

• math -

er "prove-able"

## Similar Questions

1. ### ICA Honors

1/log_2(X) + 1/log_3(x) + 1/log_4(x) +1/log_5(x) =log_5(625)
2. ### algebra

solve the logarithm log_2 (x -1)- log_2(5x +1) = -3 I got -3, is this correct?
3. ### math

log_(1/4)⁡〖1/64〗+log_2⁡〖1/32〗-log_9⁡〖(75+x)〗-log_27⁡9=(-14)/3
4. ### ALGEBRA

Evaluate the given expressions (to two decimal places). (a) log((23.0) ((b) log_(2) \(128\) text((c) ) log_(9) \(1\)
5. ### ALGEBRA

Use the definition of logarithm to simplify each expression. (a) )log_(3b) \(3b\) ((b) )log_(8b) \((8b)^6\) (c) )log_(10b) \((10b)^(-13)\)
6. ### ALGEBRA

Evaluate the given expressions (to two decimal places). (a) ) log((23.0) (b) ) log_(2) \(128\) (c) ) log_(9) \(1\)
7. ### ALGEBRA

Use the definition of logarithm to simplify each expression. text((a) )log_(3b) \(3b\) text((b) )log_(4b) \((4b)^6\) text((c) )log_(7b) \((7b)^(-11)\)
8. ### math

Prove. 3/(log_2 (a)) - 2/(log_4 (a)) = 1/(log_(1/2)(a))
9. ### Pre-Calculus

My book doesn't explain how to do these problems.. The examples they tell me to refer to have no relevance whatsoever. Any help would be appreciated. Use the power property to rewrite each expression. 17. log_3(x)^2 18. log_2(x)^5 …
10. ### maths

Q: Prove- 2/log_8a - 4/log_2a= 1/log_4a i tried dividing 1/log_4a by 2/log_4(8) - 1/log_4a by 4/log_4(2) to get log_4(8)/2.log_4a - log_4(2)/4.log_4a =log_4(8)/log_4a^2 - log_4(2)/log_4a^4 =1.5/log4a^2 - .5/log4a^4 =1/.... I don't …

More Similar Questions