Physics

posted by .

A block of mass m1 = 22.0 kg is connected to a block of mass m2 = 40.0 kg by a massless string that passes over a light, frictionless pulley. The 40.0-kg block is connected to a spring that has negligible mass and a force constant of k = 260 N/m as shown in the figure below. The spring is unstretched when the system is as shown in the figure, and the incline is frictionless. The 22.0-kg block is pulled a distance h = 18.0 cm down the incline of angle θ = 40.0° and released from rest. Find the speed of each block when the spring is again unstretched.

I know that the two speeds are equal to each other. I used Ko+Up=Kf+Uf to get this equation: (2(40*9.8*.18+1/2(.18)^2*260-22*9.8*.18*sin40))/62 to get 1.48. This wasn't right. Help!

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Physics

    A 20.0 kg block is connected to a 30.0 kg block by a string that passes over a light, frictionless pulley. The 30.0 kg block is connected to a spring that has negligible mass and a force constant of 200 N/m. The spring is unstretched …
  2. Physics

    Three blocks of masses 1.0, 2.0, and 4.0 kilograms are connected by massless strings, one of which passes over a frictionless pulley of negligible mass, as shown above. Calculate each of the following. a. The acceleration of the 4 …
  3. Physics

    A block of mass M resting on a 21.5° slope is shown. The block has coefficients of friction μs=0.605 and μk=0.344 with the surface. It is connected via a massless string over a massless, frictionless pulley to a hanging …
  4. Physics

    A block of mass M resting on a 21.5° slope is shown. The block has coefficients of friction μs=0.605 and μk=0.344 with the surface. It is connected via a massless string over a massless, frictionless pulley to a hanging …
  5. physics

    A 20.0 kg block is connected to a 30.0 kg block by a string that passes over a light, frictionless pulley. The 30.0 kg block is connected to a spring that has negligible mass and a force constant of 300 N/m, as shown in the figure …
  6. ph

    A 20.0 kg block is connected to a 30.0 kg block by a string that passes over a light, frictionless pulley. The 30.0 kg block is connected to a spring that has negligible mass and a force constant of 300 N/m, as shown in the figure …
  7. Physic

    The figure below shows a block of mass m resting on a 20¡ã slope. The block has coefficients of friction ¦Ìs = 0.73 and ¦Ìk = 0.53 with the surface. It is connected via a massless string over a massless, frictionless pulley to …
  8. Physics.

    A 500 g block lies on a horizontal tabletop. The coefficient of kinetic friction between the block and the surface is 0.25. The block is connected by a massless string to the second block with a mass of 300 g. The string passes over …
  9. Physics

    Block A sits on a horizontal tabletop. There is friction between the surface and Block A. The string passes over a frictionless, massless pulley. Block B hangs down vertically. When the two blocks are released, Block B accelerates …
  10. Physics

    A 20.0 kg block is connected to a 30.0 kg block by a string that passes over a light, frictionless pulley. The 30.0 kg block is connected to a spring that has negligible mass and a force constant of 260 N/m, as shown in the figure …

More Similar Questions