MONGU COLLEGE
posted by barotseland network .
1.Determine the sum of infinity of the series 4,2,1

MONGU COLLEGE 
bobpursley
series is geometric, r=1/2
4,2,1,1/2,1/4,1/8 ....
use geometric sum formula, a0=4, r=1/2
Respond to this Question
Similar Questions

calculus
determine whether the series is convergent if so find sum: the sum of x=3 to infinity of (k+1)^2/((x1)(x2)) is it infinity meaning it diverges? 
calculus
determine whether the series converges of diverges the sum from k=2 to infinity of (the square root of (ln(k)))/k I said that because you can't integrate the series (goes to infinity) it diverges 
calculus
determine whether the series converges of diverges the sum from k=2 to infinity of (the square root of (ln(k)))/k I said that because you can't integrate the series (goes to infinity) it diverges is this true? 
calculus
find the sum of the series: 1. the sum from n=1 to infinity of ((1)^n*(.2)^n)/n I simplified this to: (.2)^n/n I know this is alternating, but how do I know what the sum is? 
College Calculus (Binomial Series)
Expand f(x) = (x+x^2)/((1x)^3) as a power series and use it to find the sum of series (SUM from n=1 to infinity) (n^2)/(2^n) PLEASE HELP. 
calculus
Determine whether the series is convergent o divergent and say what test you used to solve it. (d) sum n=1 to infinity (5n)^(3n) / (5^n + 3)^n (e) sum k=1 to infinity 5 / sqr(2k  1) 
Calc II
Use the comparison or limit comparison test to decide if the following series converge. Series from n=1 to infinity of (4sin n) / ((n^2)+1) and the series from n=1 to infinity of (4sin n) / ((2^n) +1). For each series which converges, … 
Calculus
Determine convergence or divergence for the following series. State the tests used and justify your answers. Sum (infinity, n=1) 1/(1+e^n) Sum (infinity, n=1) (2*4*6...2n)/n! Sum (infinity, n=0) (n6)/n Sum (infinity, n=0) (n6)/n! … 
CALC 2
a. Consider the following limit as a fact: lim n> infinity ((n!)^1/n)/n = 1/e Use this limit to study the convergence of this series using the root test. Sum of infinity and n=1 of ((3^n)n!)/n^n b. Use the ratio or the root test … 
Calc 2
Use the ratio or the root test to determine the convergence of the series: Sum of infinity and n=1 of arctan(e^n), Sum of infinity and k=1 of sqroot(3^k)/(2^k)