posted by .

Let f(x) = 2ln(cosx), find f''(x)

  • calculus -

    f' = -2sinx/cosx = -2tanx
    f'' = -2sec^2(x)

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Math

    Verify the identity . (cscX-cotX)^2=1-cosX/1+cosX _______ sorry i cant help you (cscX-cotX)=1/sinX - cosX/sinX = (1-cosX)/sinX If you square this you have (1-cosX)^2/(sinX)^2 Now use (sinX)^2 = 1 - (cosX)^2 to get (1-cosX)^2 / 1 - …
  2. Pre-Calc

    Trigonometric Identities Prove: (tanx + secx -1)/(tanx - secx + 1)= tanx + secx My work so far: (sinx/cosx + 1/cosx + cosx/cosx)/(sinx/cos x - 1/cosx + cosx/cosx)= tanx + cosx (just working on the left side) ((sinx + 1 - cosx)/cosx)/((sinx …
  3. Calculus..more help!

    I have a question relating to limits that I solved lim(x-->0) (1-cosx)/2x^2 I multiplied the numerator and denominator by (1+cosx) to get lim(x->0) (1-cos^2x)/2x^2(1+cosx) = lim(x->0)sin^2x/2x^2(1+cosx) the lim(x->0) (sinx/x)^2 …
  4. Calculus

    Find the area between y=cosx and y=sinx from 0 to 2pi. To find the zeros, I combined the equations cosx-sinx=0 What's next?
  5. Trigonometry Check

    Simplify #3: [cosx-sin(90-x)sinx]/[cosx-cos(180-x)tanx] = [cosx-(sin90cosx-cos90sinx)sinx]/[cosx-(cos180cosx+sinx180sinx)tanx] = [cosx-((1)cosx-(0)sinx)sinx]/[cosx-((-1)cosx+(0)sinx)tanx] = [cosx-cosxsinx]/[cosx+cosxtanx] = [cosx(1-sinx]/[cosx(1+tanx] …
  6. Calculus

    Evaluate (integral) cot 2x dx. A. 1/2Ln sin 2x+C B. 1/2Ln cos 2x+C C. 1/2Ln sec 2x+C D. 1/2LN csc 2x+C
  7. calculus

    Let f(x)= 2ln(cosx), find f''(x)
  8. Calculus

    I know how to do this problem, but I'm stuck at the arc length differential. Set up an integral for the arc length of the curve. (Do not evaluate the integral) x=y^2ln(y), 1<y<2 dx/dy = 2yln(y) + y ds= sqrt (1 + (2yln(y)+y)^2 …
  9. Calculus

    If y=3/(sinx+cosx) , find dy/dx A. 3sinx-3cosx B. 3/(sinx+cosx)^2 C. -3/(sinx+cosx)^2 D. 3(cosx-sinx)/(sinx+cosx)^2 E. 3(sinx-cosx)/(1+2sinxcosx)
  10. Calculus 2 Trigonometric Substitution

    I'm working this problem: ∫ [1-tan^2 (x)] / [sec^2 (x)] dx ∫(1/secx)-[(sin^2x/cos^2x)/(1/cosx) ∫cosx-sinx(sinx/cosx) ∫cosx-∫sin^2(x)/cosx sinx-∫(1-cos^2(x))/cosx sinx-∫(1/cosx)-cosx sinx-∫secx-∫cosx …

More Similar Questions