Calculus
posted by Joe .
Find the derivatives of the function
k(x)=sqrt(sin(2x))^3
I think I have the answer and was wondering if i had it correct
k'(x)=2sin(x)^3+8sin(x)
Respond to this Question
Similar Questions

help, bobpursely
Please take a look at DEVON's trig equation at 9:14 I must be missing something obvious. If the second had been 3sin 2x it would be a straight forward question. The way it stands I was able to "reduce" it to the equation 8sin^4 x  … 
Calculus  Second Order Differential Equations
Posted by COFFEE on Monday, July 9, 2007 at 9:10pm. download mp3 free instrumental remix Solve the initialvalue problem. y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4 r^2+4r+6=0, r=(16 +/ Sqrt(4^24(1)(6)))/2(1) r=(16 +/ Sqrt(8)) r=8 … 
Calculus
Please look at my work below: Solve the initialvalue problem. y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4 r^2+4r+6=0, r=(16 +/ Sqrt(4^24(1)(6)))/2(1) r=(16 +/ Sqrt(8)) r=8 +/ Sqrt(2)*i, alpha=8, Beta=Sqrt(2) y(0)=2, e^(8*0)*(c1*cos(0)+c2*sin(0))=c2=2 … 
Math 2nd question
Express as a single sine or cosine function (note: this is using double angle formulas) g) 8sin^2x4 I just don't get this one. I know it's got something to do with the 12sin^2x double angle formula. It's the opposite though? 
Calculus
Can someone help me find the derivatives of these questions? 
trigonometry (please double check this)
Solve the following trig equations. give all the positive values of the angle between 0 degrees and 360 degrees that will satisfy each. give any approximate value to the nearest minute only. 1. sin2ƒÆ = (sqrt 3)/2 2. sin^2ƒÆ = … 
URGENT  Trigonometry  Identities and Proofs
Okay, today, I find myself utterly dumbfounded by these three questions  Write a proof for  2/(sqrt(3)cos(x) + sin(x))= sec((pi/6)x) Solve the following equation  2sin(2x)  2sin(x) + 2(sqrt(3)cos(x))  sqrt(3) = 0 Find all solutions … 
Calculus
2sin(2theta) + sqrt(3) = 0 interval (0,2pi) How do I solve this? 
calculus
Find complete length of curve r=a sin^3(theta/3). I have gone thus (theta written as t) r^2= a^2 sin^6 t/3 and (dr/dt)^2=a^2 sin^4(t/3)cos^2(t/3) s=Int Sqrt[a^2 sin^6 t/3+a^2 sin^4(t/3)cos^2(t/3)]dt =a Int Sqrt[sin^4(t/3){(sin^2(t/3)+cos^2(t/3)}]dt=a … 
calculus
using the squeeze theorem, find the limit as x>0 of x*e^[8sin(1/x)] what i did was: 1<=sin(1/x)<=1 8<=8*sin(1/x)<=8 e^(8)<=e^[8*sin(1/x)]<=e^(8) x*e^(8)<=x*e^[8*sin(1/x)]<=x*e^(8) lim x>0 [x*e^(8)] …