Differential eqns
posted by Erica .
a) Sketch the phase line for the differential equation
dy/dt=1/((y2)(y+1))
and discuss the behavior of the solution with initial condition y(0)=1/2
b) Apply analytic techniques to the initialvalue problem
dy/dt=1/((y2)(y+1))), y(0)=1/2
and compare your results with your discussion in part (a).
I couldn't get the equilibrium points for the equation so I did the phase line without them, and everything above 2 and below 1 was positive and between 2 and 1 is negative.
When y(0)=1/2, the solution is negative but what happens when it gets to 2 or 1 if they are not equilibrium points? And I don't really understand what they are asking for in part b.

The page at
http://www.sosmath.com/diffeq/first/phaseline/phaseline.html
has quite a lengthy and clear discussion of phase lines and equilibrium points.
Part (b) wants you to solve the equation analytically and compare the solution with your qualitative analysis in part (a). 
I read the info, but it doesnt talk about functions with no equilibrium point.
Respond to this Question
Similar Questions

Differential Equations
a) Sketch the phase line for the differential equation dy/dt=1/((y2)(y+1)) and discuss the behavior of the solution with initial condition y(0)=1/2 b) Apply analytic techniques to the initialvalue problem dy/dt=1/((y2)(y+1))), y(0)=1/2 … 
Differental Equations
a) Sketch the phase line for the differential equation dy/dt=1/((y2)(y+1)) and discuss the behavior of the solution with initial condition y(0)=1/2 b) Apply analytic techniques to the initialvalue problem dy/dt=1/((y2)(y+1))), y(0)=1/2 … 
Differential Equations
a) Sketch the phase line for the differential equation dy/dt=1/((y2)(y+1)) and discuss the behavior of the solution with initial condition y(0)=1/2 b) Apply analytic techniques to the initialvalue problem dy/dt=1/((y2)(y+1))), y(0)=1/2 … 
I would like to understand my calc homework:/
Consider the differential equation given by dy/dx=(xy)/(2) A) sketch a slope field (I already did this) B) let f be the function that satisfies the given fifferential equation for the tangent line to the curve y=f(x) through the point … 
PLEEEEEAAAASE HELP WITH DIFFERENTIAL EQ PROBLEMS!!
1) What are the equilibrium solutions to the differential equation and determine if it is stable or unstable with the initial condition y(4)=1: 0.1(y+2)(4y) 2) Use Euler's method with step size=0.5 and initial condition y(0)=3 to … 
Calculus!!
Consider the differential equation given by dy/dx = xy/2. A. Let y=f(x) be the particular solution to the given differential equation with the initial condition. Based on the slope field, how does the value of f(0.2) compare to f(0)? 
Calculus  Differential Equations
Use separation of variables to find the solution to the differential equation: 4 (du/dt) = u^2, subject to the initial condition u(0)=6. 
Calculus
Consider the differential equation dy/dx = x^4(y  2). Find the particular solution y = f(x) to the given differential equation with the initial condition f(0) = 0. Is this y=e^(x^5/5)+4? 
Calculus
Consider the differential equation dy/dx = x^2(y  1). Find the particular solution to this differential equation with initial condition f(0) = 3. I got y = e^(x^3/3) + 2. 
Calculus
Consider the differential equation dy/dx = 2x  y. Let y = f(x) be the particular solution to the differential equation with the initial condition f(2) = 3. Does f have a relative min, relative max, or neither at x = 2?