Differential Equations (Another) Cont.
posted by Erica .
For the following initial value problem:
dy/dt=1/((y+1)(t2))
a)Find a formula for the solution.
b) State the domain of definition of the solution.
c) Describe what happens to the solution as it approaches the limit of its domain of definition. Why can't the solution be extended for more time?
I separated and integrated and got y(t)=sqrt(2lnt2+C)1 and I don't really know where to go from there.
Differential Equations  Steve, Thursday, January 31, 2013 at 10:20am
y = √(2lnt2+C)1
we know that √x is defined only for x >= 0, so we must have
2lnt2 + C >= 0
lnt2 >= C/2
t2 >= e^(C/2)
t >= 2+e^(C/2)
In general, t>=2, but the form of the solution suggested that already.
As t > 2, lnt2 > infinity
Not sure why large t cannot be used. May be missing some of the characteristics of the problem.
The initial value conditons will determine C.

The initial condition was y(0)=0
I forgot to add it.
Then C=2*ln2.
How do I solve for that?
Respond to this Question
Similar Questions

Math
Find the specific solution for the following differential equations: a) (dy/dx)^2  x^4 = 0 given the initial value y(1) = 0 b) dy/dx = ysinx given the initial value y(pi) = 1 
Differential Equations
For the following initial value problem: dy/dt=1/((y+1)(t2)) a)Find a formula for the solution. b) State the domain of definition of the solution. c) Describe what happens to the solution as it approaches the limit of its domain of … 
Differential Equations
For the following initial value problem: dy/dt=1/((y+1)(t2)), y(0)=0 a)Find a formula for the solution. b) State the domain of definition of the solution. c) Describe what happens to the solution as it approaches the limit of its … 
Differential Equations
a) Sketch the phase line for the differential equation dy/dt=1/((y2)(y+1)) and discuss the behavior of the solution with initial condition y(0)=1/2 b) Apply analytic techniques to the initialvalue problem dy/dt=1/((y2)(y+1))), y(0)=1/2 … 
Differental Equations
a) Sketch the phase line for the differential equation dy/dt=1/((y2)(y+1)) and discuss the behavior of the solution with initial condition y(0)=1/2 b) Apply analytic techniques to the initialvalue problem dy/dt=1/((y2)(y+1))), y(0)=1/2 … 
Differential Equations
a) Sketch the phase line for the differential equation dy/dt=1/((y2)(y+1)) and discuss the behavior of the solution with initial condition y(0)=1/2 b) Apply analytic techniques to the initialvalue problem dy/dt=1/((y2)(y+1))), y(0)=1/2 … 
calculus
(A) Consider the wave equation with c=1, l=1, u(0,t)=0, and u(l,t)=0. The initial data are: f(x)=x(1x)2, g(x)=sin2(pi x). Find the value of the solution at x=0, t=10, and at x=1/3, t=0. Find the value of the solution at x=1/2, t=2. … 
Math: Differential Equations
Solve the initial value problem y' = y^2, y(0) = 1 and determine the interval where the solution exists. I understand how the final solution comes to y = 1/(1x), but do not understand how the solution is defined from (infinity, 1) … 
Calculus!!
Consider the differential equation given by dy/dx = xy/2. A. Let y=f(x) be the particular solution to the given differential equation with the initial condition. Based on the slope field, how does the value of f(0.2) compare to f(0)? 
Differential equations,Calculus
So I have the following differential equation. The general solution I have is: t=k(1/r)+c I now need to find the particular solution when t=0 and the radius (r) = 1cm. So k is a constant which is approx 3.9 (5/4pi) So for the particular …