Math
posted by Em .
Find the volume generated if the region bounded by y = sin 2x and y = cos x, π/6 ≤ x ≤ π/2
is revolved about the line y = 2. Use the method of washers.
Respond to this Question
Similar Questions

calculus
In spherical coordinates, the inequalities 0≤ρ≤2, 3π/4 ≤ φ ≤ π 0 ≤ θ ≤ 2π, describe what kind of shape? 
PreCalc
I'm not sure how to solve these with calculator. sec x = 2 , π ≤ x ≤ 3π sinθ=0.1473, 0°≤θ≤90° cosθ=0.7563, 0°≤θ≤90° 
Pre Calculus
sec x = 2 , π ≤ x ≤ 3π Use a calculator to solve for x in the given interval 9)sinθ=0.1473, 0°≤θ≤90° A) 8.47° B) 8.38° C) 98.47° D) 8.47° 10) cosθ=0.7563,0°≤θ≤90° … 
Math
Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line. y = 8 sin x, y = 8 cos x, 0 ≤ x ≤ π/4; about y = −1 
Trig
On the same set of axes, sketch and label the graphs of the equations y = cos 2x and y = –2 sin x in the interval 0 ≤ x ≤ 2π. How many values of x in the interval 0 ≤ x ≤ 2π satisfy the equation … 
PRE  CALCULUS
Eliminate the parameter t. Find a rectangular equation for the plane curve defined by the parametric equations. x = 6 cos t, y = 6 sin t; 0 ≤ t ≤ 2π A. x2  y2 = 6; 6 ≤ x ≤ 6 B. x2  y2 = 36; 6 ≤ … 
math
Find the area of the region. (Round your answer to three decimal places.) between y = cos t and y = sin t for −π/2 ≤ t ≤ π/2 
precalculus
y=tanx 2π≤x≤2π y=cotx 2π≤x≤2π y=cscx 2π≤x≤2π y=secx 2π≤x≤2π 
calculus 2
Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line. y = 3 sin x, y = 3 cos x, 0 ≤ x ≤ π/4; about y = −1 
Calc
h(x) = {k cos x 0 ≤ x ≤ 9π {13 − x 9π < x So far I've set it up to be 13  5π = k cos 5π but I'm completely stuck now. I tried to solve it and got (cos^1 (135π)) / 5π but i know …