# physics

posted by .

A pilot flies her route in two straight-line segments. The displacement vector A for the first segment has a magnitude of 246 km and a direction 30.0o north of east. The displacement vector B for the second segment has a magnitude of 178 km and a direction due west. The resultant displacement vector is R = A + B and makes an angle è with the direction due east. Using the component method, find (a) the magnitude of R and (b) the directional angle è.

• physics -

(1) Resolve travel segments into north and east components
(2) Perform a vector addition of the north and east components separately.
(3) With the east and north components of the sum vector, N and E, compute the magnitude and direction

Magnitude = sqrt(N^2 + E^2)
Direction (N of E) = tan^-1 (N/E)

## Similar Questions

1. ### physics

A pilot flies her route in two straight-line segments. The displacement vector A for the first segment has a magnitude of 242 km and a direction 30.0o north of east. The displacement vector for the second segment has a magnitude of …

A pilot flies her route in two straight-line segments. The displacement vector A for the first segment has a magnitude of 254 km and a direction 30.0o north of east. The displacement vector for the second segment has a magnitude of …
3. ### physics

The route followed by a hiker consists of three displacement vectors , , and . Vector is along a measured trail and is 1060 m in a direction 20.0 ° north of east. Vector is not along a measured trail, but the hiker uses a compass …
4. ### Physics

A jogger runs 145m. in a direction 20.0 degrees east of north (displacement of vector A) and then 105m. in a direction 35.0 degrees south of east (displacement of vector B). Using components, determine the magnitude and direction of …
5. ### physics

A pilot flies her route in two straight-line segments. The displacement vector A for the first segment has a magnitude of 246 km and a direction 30.0o north of east. The displacement vector B for the second segment has a magnitude …
6. ### physics

(a) An object is subjected to two displacements. The displacement vector of the first, V1 , has a magnitude of 186 m at an angle 23° North of East. The second displacement vector, V2 , has a magnitude of 327 m at an angle 43° West …
7. ### physics

Displacement vectors A, B, and C add up to a total of zero. Vector A has a magnitude of 1550 m and a direction of 22.9° north of east. Vector B has a direction of 41.0° east of south, and vector C has a direction of 35.2° north …
8. ### physics

Displacement vectors A,B,and C add up to a total of zero. Vector A has a magnitude of 1550 m and a direction of 24.1° north of east. Vector B has a direction of 41.0° east of south, and vector C has a direction of 33.4° north of …
9. ### physics

Displacement vectors A, B, and C add up to a total of zero. Vector A has a magnitude of 1550 m and a direction of 22.9° north of east. Vector B has a direction of 41.0° east of south, and vector C has a direction of 35.2° north …
10. ### physics

vector A = a displacement of 20 m due east vector B = a displacement of 30 m north find the magnitude and direction of the vector sum a+b

More Similar Questions