# science, physics

posted by .

A block of mass 0.25 kg is connected to a spring with spring constant 35 N/m. The block is oscillating on a frictionless horizontal surface. Its speed as it passes through its equilibrium position is 1.04 m/s. What's the total energy of the system?

• science, physics -

The total energy is entirely kinetic energy as the block passes through the equilibrium position

E = 1/2*m*v^2

where m is the mass, and v is the velocity

## Similar Questions

1. ### Physics

An 8.00 kg block is placed on a rough horizontal surface and connected to a spring of spring constant 100 N/m. The spring is then stretched by some distance A and released. The block will begin to oscillate back and forth across the …
2. ### Physics

A block has mass 800 g, whose is fasten to a spring with spring constant k is 70 N/m. The block is pulled a distance x = 15 cm from its equilibrium position at x = 0 on a frictionless surface and released from rest at t = 0. (a) What …
3. ### Physics

A block of mass m = 2.00 kg is attached to a spring of force constant k = 5.15 102 N/m that lies on a horizontal frictionless surface as shown in the figure below. The block is pulled to a position xi = 5.75 cm to the right of equilibrium …
4. ### Physics

A block of mass m = 2.00 kg is attached to a spring of force constant k = 5.15 102 N/m that lies on a horizontal frictionless surface as shown in the figure below. The block is pulled to a position xi = 5.75 cm to the right of equilibrium …
5. ### Physics,

A block of mass 0.25 kg is connected to a spring with spring constant 35 N/m. The block is oscillating on a frictionless horizontal surface. Its speed as it passes through its equilibrium position is 1.04 m/s. What's the total energy …
6. ### Physics

A 6 kg block free to move on a horizontal, frictionless surface is attached to a spring. The spring is compressed 0.16 m from equi- librium and released. The speed of the block is 1.44 m/s when it passes the equilibrium po- sition …
7. ### Physics

A 6 kg block free to move on a horizontal, frictionless surface is attached to a spring. The spring is compressed 0.16 m from equi- librium and released. The speed of the block is 1.44 m/s when it passes the equilibrium po- sition …
8. ### Physics

You attach one end of a spring with a force constant k = 893 N/m to a wall and the other end to a mass m = 2.02 kg and set the mass-spring system into oscillation on a horizontal frictionless surface as shown in the figure. To put …
9. ### Physics

A 4.36 kg block free to move on a horizontal, frictionless surface is attached to one end of a light horizontal spring. The other end of the spring is fixed. The spring is compressed 0.144 m from equilibrium and is then released. The …
10. ### phy 231

A block of mass 0.39 kg connected to a spring with spring constant 30 N/m is oscillating on a frictionless horizontal surface. Its speed as it passes through its equilibrium position is 0.5 m/s. What is the total energy of the system …

More Similar Questions