maths-calculus

posted by .

mean value theorem prove sq root 9.1 is less than or equal to 3+1/60

  • maths-calculus -

    let f(x) = x^2-9.1
    f(3) = = -.1
    f(3+1/60) = 9 + 6/60 + 1/3600 - 9.1 = 1/3600

    since f is continuous, f assumes all values between -.1 and 1/3600, which includes 0.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. calculus

    Let f(x) = (x+1)/(x-1). Show that there are no vlue of c such that f(2)-f(0) =f'(c)(2-0). Why does this not contradict the Mean Value Theorem?
  2. CALCULUS!

    suppose that 3 <_ f prime of x <_ 5, for all values x. show that 18<_ f(8)-f(2) <_ 30 <_ signs mean less or equal to... im supposed to apply mean value theorem or rolle's theorem... i don't understand neither so i cant …
  3. AP Calculus

    Show that the equation x^3 - 15x + c = o has exactly one real root. All I know is that it has something to do with the Mean Value Theorem/Rolle's Theorem.
  4. Math - Calculus

    Show that the equation x^3-15x+c=0 has at most one root in the interval [-2,2]. Perhaps Rolle's Theorem, Mean Value Theorem, or Intermediate Value Theorem hold clues?
  5. Math - Calculus

    Show that the equation x^3-15x+c=0 has at most one root in the interval [-2,2]. Perhaps Rolle's Theorem, Mean Value Theorem, or Intermediate Value Theorem hold clues?
  6. Calculus

    Consider the function f(x)=6x-cos(x)+5 on the interval 0 is less than or equal to x, and x is less than or equal to 1. The Intermediate Value Theorem guarantees that there is a value c such that f(c)=k for which values of c and k?
  7. calculus

    Consider the function f(x)=65x−cos(x)+2 on the interval 0 less than or equal to x less than or equal to 1. The Intermediate Value Theorem guarantees that there is a value c such that f(c)=k for which values of c and k?
  8. Calculus

    Verify the hypothesis of the mean value theorem for each function below defined on the indicated interval. Then find the value “C” referred to by the theorem. Q1a) h(x)=√(x+1 ) [3,8] Q1b) K(x)=(x-1)/(x=1) [0,4] Q1c) Explain …
  9. math

    Suppose f(x) = x^3 on the interval [1, 4]. Use the Mean Value Theorem to find all values c in the open interval (1, 4) such that f'(c)= (f(4)-f(1))/4-1 c= square root of 7 c= cubed root of 21 c = 7 Mean Value Theorem does not apply
  10. Calculus

    Given f(x) = -1/x, find all c in the interval [-3, -½] that satisfies the Mean Value Theorem. A. c= -sqrt(3/2) B. c= +or- sqrt(3/2) C. The Mean Value Theorem doesn’t apply because f is not continuous at x=0 D. The Mean Value Theorem …

More Similar Questions