Calculus

posted by .

Evaluate the integral by changing to spherical coordinates.

The outer boundaries are from 0 to 1.
The middle one goes from -sqrt(1-x^2) to sqrt(1-x^2)
The inner one goes from -sqrt(1-x^2-z^) to sqrt(1-x^2-z^)
for 1/sqrt(x^2+y^2+z^2) dydzdx

I don't understand how to get the limits of integration. I know for rho it will be from 0 to 1. I want to know the process to get the boundaries for phi and theta since I have a few other similar problems to do.

  • Calculus -

    you are integrating over the whole sphere, so

    0 <= p <= 1 (inside-outside)
    0 <= φ <= 2π (whole x-y plane)
    0 <= θ <= π (top-to-bottom of sphere)

    There must be some examples in your text. And there are surely some online.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. math calculus please help!

    l = lim as x approaches 0 of x/(the square root of (1+x) - the square root of (1-x) decide whether: l=-1 or l=0 or l=1 Let me make sure I understand the question. Do we have lim x->0 x/[sqrt(1+x) - sqrt(1-x)] ?
  2. Math(Roots)

    sqrt(24) *I don't really get this stuff.Can somebody please help me?
  3. Mathematics

    sqrt 6 * sqrt 8 also sqrt 7 * sqrt 5 6.92820323 and 5.916079783 So you can see the steps — sqrt 6 * sqrt 8 = sqrt 48 sqrt 7 * sqrt 5 = sqrt 35 I hope this helps a little more. Thanks for asking.
  4. Math Help please!!

    Could someone show me how to solve these problems step by step.... I am confused on how to fully break this down to simpliest terms sqrt 3 * sqrt 15= sqrt 6 * sqrt 8 = sqrt 20 * sqrt 5 = since both terms are sqrt , you can combine …
  5. Calculus

    Please look at my work below: Solve the initial-value problem. y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4 r^2+4r+6=0, r=(16 +/- Sqrt(4^2-4(1)(6)))/2(1) r=(16 +/- Sqrt(-8)) r=8 +/- Sqrt(2)*i, alpha=8, Beta=Sqrt(2) y(0)=2, e^(8*0)*(c1*cos(0)+c2*sin(0))=c2=2 …
  6. Calculus

    Evaluate the indefinite integral: 8x-x^2. I got this but I the homework system says its wrong:sqrt((-x-8)x)/(2*sqrt(x-8)*sqrt(x))*(((sqrt(x-8)*(x-4)*sqrt(x))-32*log(sqrt(x-8)+sqrt(x))
  7. Calculus

    Evaluate the integral by changing to spherical coordinates. The outer boundaries are from 0 to 1. The middle one goes from -sqrt(1-x^2) to sqrt(1-x^2) The inner one goes from -sqrt(1-x^2-z^) to sqrt(1-x^2-z^) for 1/sqrt(x^2+y^2+z^2) …
  8. Calculus

    Evaluate the integral by changing to spherical coordinates. The outer boundaries are from 0 to 1. The middle one goes from -sqrt(1-x^2) to sqrt(1-x^2) The inner one goes from -sqrt(1-x^2-z^) to sqrt(1-x^2-z^) for 1/sqrt(x^2+y^2+z^2) …
  9. Calculus

    Evaluate the integral by changing to spherical coordinates. The outer boundaries are from 0 to 1. The middle one goes from -sqrt(1-x^2) to sqrt(1-x^2) The inner one goes from -sqrt(1-x^2-z^) to sqrt(1-x^2-z^) for 1/sqrt(x^2+y^2+z^2) …
  10. Algebra

    Evaluate sqrt7x (sqrt x-7 sqrt7) Show your work. sqrt(7)*sqrt(x)-sqrt(7)*7*sqrt(7) sqrt(7*x)-7*sqrt(7*7) sqrt(7x)-7*sqrt(7^2) x*sqrt 7x-49*x ^^^ would this be my final answer?

More Similar Questions