statistics
posted by Anonymous .
The breaking strength (in pounds) of a certain new synthetic is normally distributed, with a mean of 165 and a variance of 9. The material is considered defective if the breaking strength is less than 156 pounds. What is the probability that a single, randomly selected piece of material will be defective? (Give the answer to two decimal places.)

statistics 
PsyDAG
Z = (scoremean)/SD
SD = √variance
Find table in the back of your statistics text labeled something like "areas under normal distribution" to find the proportion/probability related to the Z score.
Respond to this Question
Similar Questions

statistics
The breaking strength (in pounds) of a certain new synthetic is normally distributed, with a mean of 170 and a variance of 4. The material is considered defective if the breaking strength is less than 166 pounds. What is the probability … 
math
The breaking strength (in pounds) of a certain new synthetic is normally distributed, with a mean of 165 and a variance of 4. The material is considered defective if the breaking strength is less than 161 pounds. What is the probability … 
math
The breaking strength (in pounds) of a certain new synthetic is normally distributed, with a mean of 165 and a variance of 4. The material is considered defective if the breaking strength is less than 161 pounds. What is the probability … 
algebra
The breaking strength (in pounds) of a certain new synthetic is normally distributed, with a mean of 165 and a variance of 9. The material is considered defective if the breaking strength is less than 156 pounds. What is the probability … 
Statistics/I am confused
The breaking strength (in pounds) of a certain new synthetic is normally distributed, with a mean of 115 and a variance of 25. The material is considered defective if the breaking strength is less than 105 pounds. What is the probability … 
statistics
the breaking strength (in pounds) of a certain new synthetic is normally distributed, with a mean of 125 and a variance of 25. The material is considered defective if the breaking strength is less than 113 pounds. What is the probability … 
statistics
the breaking strength (in pounds) of a certain new synthetic is normally distributed, with a mean of 125 and a variance of 25. The material is considered defective if the breaking strength is less than 113 pounds. What is the probability … 
math
The breaking strength (in pounds) of a certain new synthetic is normally distributed, with a mean of 165 and a variance of 9. The material is considered defective if the breaking strength is less than 157.8 pounds. What is the probability … 
Math
The breaking strength (in pounds) of a certain new synthetic is normally distributed, with a mean of 125 and a variance of 25. The material is considered defective if the breaking strength is less than 113.5 pounds. What is the probability … 
Math
The breaking strength (in pounds) of a certain new synthetic is normally distributed, with a mean of 165 and a variance of 16. The material is considered defective if the breaking strength is less than 156.2 pounds. What is the probability …