Calc 1

posted by .

integrate from 0 to pi/2 (3sinxcosx)/(1+3sin^2x)^1/2

  • Calc 1 -

    note that if
    u = 1+3sin^2x
    du = 6sinxcosx

    so you have

    ∫[1,4] u^(-1/2) 1/2 du
    = √u [1,4]
    = 1

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Calc

    Calculate the area bounded by the x-axis and the function f(x)= -(x-a)(x-b), where a<b and a and b are constants. Please do it out in steps so I can understand it, and try to simplify the final answer and leave it in factored form. …
  2. Integral calculus

    Please do help solve the followings 1) Integrate e^4 dx 2) Integrate dx/sqrt(90^2-4x^2) 3) Integrate (e^x+x)^2(e^x+1) dx 4) Integrate xe^x2 dx e^4 is a constant. 3) let u= e^x + x du= (e^x + 1)dx 4) let u= x du=dx v= e^x dv= e^x dx
  3. Calculus

    Find the derivative of y with respect to x: y=3sin^4(2-x)^-1 y=[3sin(2-x)^-1]^4 y'=4[3sin(2-x)^-1]^3 (-3cos(2-x)^-1)(-1) -(2-x)^-2 y'=[12cos(2-x)^-1][3sin^3(2-x)^-1][2-x]^2 but the answer does not have a 3 in front of sin. What happened …
  4. Calc

    How do you know what shape the graph in the xy-plane represented by x=3sin(t) and y=2cos(t) is?
  5. Math

    Can you help me with this? I did this many times and got different answers each time. Find f. f ''(x) = 3e^x + 3sin(x) f(0) = 0 f(π) = 0 My work: f ''(x) = 3e^x + 3sin(t) f'(x) = 3e^x - 3cos(t) + C f(x) = 3e^x -3sin(t) + Cx +
  6. Pre-calc

    solve 3sin^2(x)=5sin(x)+2 (0≤x<π)
  7. Calc 1

    integrate from 0 to pi/4 (sec^2x)/((1+7tanx)^2)^1/3 integrate form pi^2/36 to pi^2/4 (cos(x^1/2))/(xsin(x^1/2))^1/2 integrate from 0 to pi/3 (tanx)/(2secx)^1/2
  8. calc

    integrate (3+x)x^(1/2)dx=? please help I have no idea how to integrate this problem
  9. Physics

    Given below are the some of the function of x and t to represent the displacement (transverse or longitudnal ) of an elastic wave . State whether it is stationary or travelling wave or none of them. (i) y = 3sin(5x+0.5t) + 4cos(5x+0.5t) …
  10. Math-intergration

    Show that integrate.[e^(-4x)*(cos 3x)] from 0-infinity =4/25 I got the answer(without applying limits) as, {(e^(-4x) )[3sin(3x) - 4cos(3x)]}/25 But when applying the upper limit what is the value of, {(e^(-infinity) )[3sin(3*infinity) …

More Similar Questions