Mathematics
posted by MM .
Find the maximum or minimum values of sin x+sin y+sin(x+y)

z = sinx + siny + sin(x+y)
to find the maxima, we need
∂z/∂x = 0 and ∂z/∂y = 0
∂z/∂x = cosx + cos(x+y)
∂z/∂y = cosy + cos(x+y)
∂z/dx = 0 when x+y = pix
A handy place for this is at (pi/3,pi/3)
z(pi/3,pi/3) = √3/2 + √3/2 + √3/2 = 3√3/2 = 2.598
Respond to this Question
Similar Questions

tigonometry
expres the following as sums and differences of sines or cosines cos8t * sin2t sin(a+b) = sin(a)cos(b) + cos(a)sin(b) replacing by by b and using that cos(b)= cos(b) sin(b)= sin(b) gives: sin(ab) = sin(a)cos(b)  cos(a)sin(b) … 
algebra
Can someone please help me do this problem? 
Mathematics  Trigonometric Identities
Let y represent theta Prove: 1 + 1/tan^2y = 1/sin^2y My Answer: LS: = 1 + 1/tan^2y = (sin^2y + cos^2y) + 1 /(sin^2y/cos^2y) = (sin^2y + cos^2y) + 1 x (cos^2y/sin^2y) = (sin^2y + cos^2y) + (sin^2y + cos^2y) (cos^2y/sin^2y) = (sin^2y … 
Calculus
Consider the function f(x)=sin(1/x) Find a sequence of xvalues that approach 0 such that sin (1/x)=0 sin (1/x)=1 sin (1/x)=1 Is sin sin (1/x)=0 and sin (1/x)=1 does not exist. What is sin (1/x)=1 then. How would I show the sequence … 
Calculus
Consider the function f(x)=sin(1/x) Find a sequence of xvalues that approach 0 such that sin (1/x)=0 sin (1/x)=1 sin (1/x)=1 Is sin sin (1/x)=0 and sin (1/x)=1 does not exist. What is sin (1/x)=1 then. 
Calculus
Consider the function f(x)=sin(1/x) Find a sequence of xvalues that approach 0 such that (1) sin (1/x)=0 {Hint: Use the fact that sin(pi) = sin(2pi)=sin(3pi)=...=sin(npi)=0} (2) sin (1/x)=1 {Hint: Use the fact that sin(npi)/2)=1 if … 
Calculus
Consider the function f(x)=sin(1/x) Find a sequence of xvalues that approach 0 such that (1) sin (1/x)=0 {Hint: Use the fact that sin(pi) = sin(2pi)=sin(3pi)=...=sin(npi)=0} (2) sin (1/x)=1 {Hint: Use the fact that sin(npi)/2)=1 if … 
TRIG!
Posted by hayden on Monday, February 23, 2009 at 4:05pm. sin^6 x + cos^6 x=1  (3/4)sin^2 2x work on one side only! Responses Trig please help!  Reiny, Monday, February 23, 2009 at 4:27pm LS looks like the sum of cubes sin^6 x + cos^6 … 
Trignometry
Let m and M be the minimum and maximum values of the domain of f(x)=sin^−1(x2−35), respectively. What is the value of M−m? 
trigo
find the period, amplitude,zeros, extreme points at maximum and minimum of the given function: 1.y = sin( 2x) 2.y = 4 sin( 5x) 3.y = 3 sin (3x/5) 4.y = 1/2 cos (4x)