# Physics

posted by .

a car that weights 15000 N is initially moving at 60 km/hour when the brakes are applied. The car is brought to a stop at 30 meters. Determine the magnitude of the braking force

## Similar Questions

1. ### Science

A car weights 1.30 X 10^4 N is initially moving at a speed of 40km/h when the brakes are applied and the car is brought to a stop in 15m. Assuming that the force that srops the car is constant. find a)magnitude of the force b)time …
2. ### Physics

A car that weighs 14900.0 N is initially moving at a speed of 57.0 km/hr when the brakes are applied and the car is brought to a stop in 4.8 s. Find the magnitude of the force that stops the car, assuming it is constant. I found a …
3. ### physics

A car that weighs 1.5 × 10^4 N is initially moving at a speed of 43 km/h when the brakes are applied and the car is brought to a stop in 16 m. Assuming that the force that stops the car is constant, find (a) the magnitude of that …
4. ### physics

A car that weighs 15,000 N is initially moving at 60 km/hr when the brakes are applied. The car is brought to a stop in 30 m. Assuming the force applied by the brakes is constant, determine the magnitude of the braking force.
5. ### physics

A car that weighs 15,000 N is initially moving at 60km/hr when the brakes are applied. The car is brought to a stop in 30m. Assuming the force applied by the brakes is constant, determine the magnitude of the braking force.
6. ### Physics

A car that weighs 14600.0 N is initially moving at a speed of 58.0 km/hr when the brakes are applied and the car is brought to a stop in 4.7 s. Find the magnitude of the force that stops the car, assuming it is constant.
7. ### physics

A car that weifgs 15000 n is initially moving at 60 km/hr when the brakes are applied. The cae is broight to a stop in 30 m. Assuming the force applied by the brakes is constant, determine the magnitude of the braking force.
8. ### Physics

A car moving initially at a speed of 80 km/h and weighing 13,000 N is brought to a stop ina distance of 61 m. Find(a) the braking force and (b) the time required to stop. Assuming the same braking force, find (c) the distance and (d) …
9. ### Physics

1) A car moving along a straight stretch of road at 60 mph [26.7 meters/sec]. The driver makes slams on his breaks locking them so that the car skids to a stop. Assume a constant braking force due to friction, and a kinetic friction …
10. ### Physics

A driver in a car, originally moving at 13.1 m/s, applies the brakes until the car comes to a stop. The car moves a distance of 34.1 m while braking. How much time did it take for the car to stop?

More Similar Questions