physics

posted by .

A large fake cookie sliding on a horizontal surface is attached to one end of a horizontal spring with spring constant k = 375 N/m; the other end of the spring is fixed in place. The cookie has a kinetic energy of 20.0 J as it passes through the position where the spring is unstretched. As the cookie slides, a frictional force of magnitude 10.0 N acts on it.

(a) How far will the cookie slide from the position where the spring is unstretched before coming momentarily to rest?
m

(b) What will be the kinetic energy of the cookie as it slides back through the position where the spring is unstretched?
J(a) How far will the cookie slide from the position where the spring is unstretched before coming momentarily to rest?
m

(b) What will be the kinetic energy of the cookie as it slides back through the position where the spring is unstretched?
J

  • physics -

    a. energy available 20J
    20J=10d+1/2 k d^2 k is given, calculate distance d.
    b. KE=20-2*10d
    c. solve for d1: 20-2*10dabove-1/2 k d1^2
    d. you do it just the same...

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. AP PHYSICS

    A .35 kg ladle sliding on a horizontal frictionless surface is attached to one end of a horizontal spring (with the spring constant (k) =455 N/m) whose other end is fixed. The mass has a kinetic energy of 10 J as it passes through …
  2. I really dont get this. physics

    A .35 kg ladle sliding on a horizontal frictionless surface is attached to one end of a horizontal spring (with the spring constant (k) =455 N/m) whose other end is fixed. The mass has a kinetic energy of 10 J as it passes through …
  3. Physics

    A mass sitting on a horizontal, frictionless surface is attached to one end of a spring; the other end is fixed to a wall. 3.0 J of work is required to compress the spring by 0.17 m. If the mass is released from rest with the spring …
  4. Physics Spring

    A mass sitting on a horizontal, frictionless surface is attached to one end of a spring; the other end is fixed to a wall. 1.0 J of work is required to compress the spring by 0.12 m. If the mass is released from rest with the spring …
  5. Physics

    A mass sitting on a horizontal, frictionless surface is attached to one end of a spring; the other end is fixed to a wall. 5.5 J of work is required to compressed the spring by 0.16 m. If the mass is released from rest with the spring …
  6. Physics 12

    A large fake cookie sliding on a horizontal surface is attached to one end of a horizontal spring with spring constant k = 375 N/m; the other end of the spring is fixed in place. The cookie has a kinetic energy of 20.0 J as it passes …
  7. physics

    A spring (spring 1) with a spring constant of 520N/m is attached to a wall and connected to another weaker spring (spring 2) with a spring constant of 270N/m on a horizontal surface. Then an external force of 70N is applied to the …
  8. Physics

    A block of mass M=6 kg and initial velocity v=0.8m/s slides on a frictionless horizontal surface and collides with a relaxed spring of unknown spring constant. The other end of the spring is attached to a wall. If the maximum compression …
  9. physics

    A large fake cookie sliding on a horizontal surface is attached to one end of a horizontal spring with spring constant k = 430 N/m; the other end of the spring is fixed in place. The cookie has a kinetic energy of 21.0 J as it passes …
  10. Physics

    A 5.00-kg object is attached to one end of a horizontal spring that has a negligible mass and a spring constant of 420 N/m. The other end of the spring is fixed to a wall. The spring is compressed by 10.0 cm from its equilibrium position …

More Similar Questions