Maths  Integration by parts
posted by Anonymous .
Integral x^2 sin(x) dx

Let I = ∫x^2 sinx dx
u = x^2
du = 2x dx
dv = sinx
v = cosx
∫u dv = uv  ∫v du
= x^2 cosx + ∫2x cosx dx
now, for ∫x cosx dx,
u = x
du = dx
dv = cosx dx
v = sinx
I = x^2 cosx + 2(x sinx  ∫sinx dx)
= x^2 cosx + 2x sinx + 2cosx + C
= 2x sinx + (2x^2)cosx + C
Respond to this Question
Similar Questions

integration by parts
s integral s ln (2x+1)dx ? = ln(2x+1)x  s x d( ln (2x+1)) = ln(2x+1)x s x [(2x+1)'/ (2x+1)] dx = ln(2x+1)x s x [(2)/ (2x+1)] ? 
trig integration
s integral endpoints are 0 and pi/2 i need to find the integral of sin^2 (2x) dx. i know that the answer is pi/4, but im not sure how to get to it. i know: s sin^2(2x)dx= 1/2 [1cos (4x)] dx, but then i'm confused. The indefinite … 
Integral
That's the same as the integral of sin^2 x dx. Use integration by parts. Let sin x = u and sin x dx = dv v = cos x du = cos x dx The integral is u v  integral of v du = sinx cosx + integral of cos^2 dx which can be rewritten integral … 
calc
evaluate the integral: y lny dy i know it's integration by parts but i get confused once you have to do it the second time Leibnitz rule (a.k.a. product rule): d(fg) = f dg + g df y lny dy = d[y^2/2 ln(y)]  y/2 dy > Integral … 
Math/Calculus
How would I integrate the following by parts: Integral of: (x^2)(sin (ax))dx, where a is any constant. Just like you did x^2 exp(x) below. Also partial integration is not the easiest way to do this integral. You can also use this method. … 
Calculus II
Evaluate the integral using method of integration by parts: (integral sign)(e^(2x))sin(5x)dx 
math
I'm trying to find the convolution f*g where f(t)=g(t)=sin(t). I set up the integral and proceed to do integration by parts twice, but it keeps working out to 0=0 or sin(t)=sin(t). How am I supposed to approach it? 
double integral
1. Sketch the region of integration & reverse the order of integration. Double integral y dydz... 1st (top=1, bottom =0)... 2nd(inner) integral (top=cos(piex), bottom=(x2)... 2. Evaluate the integral by reversing the order of integration. … 
Calculus Problem
I need to find the integral of e^(2x)sin(3x) I used integration by parts and I let u=e^2x and dv=sin(3x) My final answer was (3/8)(e^(2x))(cos(3x))  (1/8)(e^(2x))(sin(3x)) but it's wrong. Please help!! 
Integration by Parts
integral from 0 to 2pi of isin(t)e^(it)dt. I know my answer should be pi. **I pull i out because it is a constant. My work: let u=e^(it) du=ie^(it)dt dv=sin(t) v=cos(t) i integral sin(t)e^(it)dt= e^(it)cos(t)+i*integral cost(t)e^(it)dt …