physics

posted by .

A toy race car starts from rest on a circular track of radius 4.30 m. The cars speed increases at the constant rate of 2.90 m/s2. At the point where the magnitudes of the centripetal and tangential accelerations are equal, determine (a) the speed of the race car.

  • physics -

    R=4.3 m, a(τ)=8.8 m/s².

    a(τ)=a(c) =v²/R =>
    v=sqrt{a(c) •R}= sqrt{a(τ) •R}=
    =sqrt{8.8•4.3}=6.15 m/s.

    v=a(τ) •t,
    t= v/a(τ)=6.15/8.8 =0.699 s= 0.7 s.

    s= a(τ) •t²/2 =8.8•0.7²/2=2.156 m.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Physics

    A race car starts from rest on a circular track of radius 507 m. The car's speed increases at the constant rate of 0.790 m/s2. At the point where the magnitudes of the centripetal and tangential accelerations are equal, find the following. …
  2. Math

    A race car starts from rest on a circular track of radius 565 m. The car's speed increases at the constant rate of 0.520 m/s2. At the point where the magnitudes of the centripetal and tangential accelerations are equal, find the following. …
  3. physics

    A race car starts from rest on a circular track of radius 265 m. The car's speed increases at the constant rate of 0.540 m/s2. At the point where the magnitudes of the centripetal and tangential accelerations are equal, find the following.
  4. Physics

    A race car starts from rest on a circular track of radius 500 m. The car's speed increases at the constant rate of 0.520 m/s2. At the point where the magnitudes of the centripetal and tangential accelerations are equal, find the following. …
  5. Physics- PLEASE HELP

    A toy race car starts from rest on a circular track of radius 4.30 m. The cars speed increases at the constant rate of 8.80 m/s2. At the point where the magnitudes of the centripetal and tangential accelerations are equal, determine …
  6. Physics HELP!

    A toy race car starts from rest on a circular track of radius 4.30 m. The cars speed increases at the constant rate of 8.80 m/s2. At the point where the magnitudes of the centripetal and tangential accelerations are equal, determine …
  7. physics

    A toy race car starts from rest on a circular track of radius 4.30 m. The cars speed increases at the constant rate of 2.90 m/s2. At the point where the magnitudes of the centripetal and tangential accelerations are equal, determine …
  8. Physics

    A race car starts from rest on a circular track of radius 445 m. The car's speed increases at the constant rate of 0.380 m/s2. At the point where the magnitudes of the centripetal and tangential accelerations are equal, find the following. …
  9. Physics

    A race car starts from rest in the pit area and accelerates at a uniform rate to a speed of 35 m/s in 11s, moving on a circular track of radius 500 m. Determine the tangential and centripetal components of the net force excreted on …
  10. Physics

    A race car starts from rest on a circular track of radius 279 m. The car's speed increases at the constant rate of 0.760 m/s2. At the point where the magnitudes of the centripetal and tangential accelerations are equal, find the following …

More Similar Questions