Calculus

posted by .

1. Locate the absolute extrema of the function f(x)=cos(pi*x) on the closed interval [0,1/2].
2. Determine whether Rolle's Theorem applied to the function f(x)=x^2+6x+8 on the closed interval[-4,-2]. If Rolle's Theorem can be applied, find all values of c in the open interval (-4,-2) such that f'(c)=0.
3. Determine whether the open intervals on which the graph of f(x)=-7x+7cosx is concave upward or downward.
4. Find the points of inflection and discuss the concavity of the function f(x)=sinx-cosx on the interval (0,2pi)
5.Find the points of inflection and discuss the concavity of the function f(x)=-x^3+x^2-6x-5

  • Calculus -

    1.
    f' = -pi sin(pi*x) extrema where f' = 0, or x an integer

    2.
    since f(x) = (x+4)(x+2) f(-4)=f(-2)=0, so we're good to do. vertex is at x = -3.

    3.
    f is concave up if f'' > 0
    f'' = -7cosx, so where is that >0? <0?

    4.
    concavity as above, inflection where f'' = 0
    f'' = -sinx + cosx = √2 sin(x + π/4)

    5.
    same methods as in #3,4/
    f'' = -6x

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. calc

    Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers c that satisfy the conclusion of Rolle's Theorem. f(x)= x sqrt(x+21) , [-21,0] If there is more than one solution …
  2. calc

    Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers "c" that satisfy the conclusion of Rolle's Theorem. f(x)=sin4pix , [-1/2,1/2] Well according to Rolle's Theorem, …
  3. URGENT!! PLEASE Calc

    Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers "c" that satisfy the conclusion of Rolle's Theorem. f(x)=sin4pix , [-1/2,1/2] Well according to Rolle's Theorem, …
  4. calculus

    Show that the function f(x)=4x^3−15x^2+9x+8 satisfies the three hypotheses of Rolle’s theorem on the interval [0,3]. Then find the values of c on the interval [0,3] that are guaranteed by Rolle’s theorem. Give your answer …
  5. Math

    Determine whether Rolle's Theorem can be applied to f on the closed interval [a,b]. (Select all that apply.) f (x) = sin(x), [0, 2π] If Rolle's Theorem can be applied, find all values of c in the open interval (a, b) such that …
  6. Calculus

    1. Determine whether Rolle's Theorem applied to the function f(x)=((x-6)(x+4))/(x+7)^2 on the closed interval[-4,6]. If Rolle's Theorem can be applied, find all numbers of c in the open interval (-4,6) such that f'(c)=0. 2. Determine …
  7. calculus

    determine whether the mean value theorem can be applied to f on the closed interval [a,b]. If the Mean Value Theorem can be applied, find all values of c in the open interval (a,b) such that f(c) =f(b) - f(a) / b - a
  8. Calculus

    Determine whether Rolle's Theorem can be applied to f on the closed interval [a,b]. If Rolle's Theorem can be applied, find all values of c in the open interval (a,b) such that f'(x)=0. f(x) = x^(2/3) - 1 [-8,8] I plugged in both values …
  9. calculus

    Determine whether Rolle's Theorem can be applied to f on the closed interval [a, b]. (Select all that apply.) f(x) = x^2/3 − 2, [−8, 8] 1) Yes, Rolle's Theorem can be applied. 2)No, because f is not continuous on the closed …
  10. calculus

    Rolle's theorem cannot be applied to the function f(x) = x1/3 on the interval [–1, 1] because Answer Choices: f is not differentiable on the interval [–1, 1] f(–1) ≠ f(1) f is not differentiable on the interval [–1, 1] and …

More Similar Questions