Calculus
posted by Ally .
Im finding local Min and max of x^2/x2
I know I take the derivative of the first one but how do i derive this one. And the second one especially don't know how to do.

Use the quotient rule to differentiate (not derive):
if y = f/g
y' = (f'g  fg')/g^2
so, we have
y = x^2/(x2)
y' = [(2x)(x2)  x^2(1)]/(x2)^2
= x(x4)/(x2)^2
Or, you can divide first
y = x+2 + 4/(x2)
y' = 1  4/(x2)^2
anyway, min/max is where y'=0, so x=0 or 4. (This is easiest to see looking at the first form of the solution.)
which is min, which is max?
y'' = 8/(x2)^3
y''(0) = 1, so y is concave down (max)
y''(4) = +1, so y is concave up (min)