Trigonometry
posted by Josh G. .
use the double angle formula to rewrite.
6cos^23
and
(cosx +sinx)(cosxsinx)

Trigonometry 
Bosnian
cos ( 2 x ) = 2 cos ^ 2 ( x )  1
6 cos ^ 2 ( x )  3 =
3 [ 2 cos ^ 2 ( x )  1 ] =
3 sin ( 2 x ) 
Trigonometry 
Reiny
second one:
(cosx +sinx)(cosxsinx)
=(cosx +sinx)(cosxsinx) * (cosx + sinx)/(cosx + sinx)
= (cos^2 x + 2sinxcosx + sin^2 x)/(cos^2 x  sin^2 x)
= (1 + sin 2x)/cos 2x
or
1/cos 2x + sin 2x/cos 2x
= sec 2x + tan 2x
Respond to this Question
Similar Questions

Math
Verify the identity . (cscXcotX)^2=1cosX/1+cosX _______ sorry i cant help you (cscXcotX)=1/sinX  cosX/sinX = (1cosX)/sinX If you square this you have (1cosX)^2/(sinX)^2 Now use (sinX)^2 = 1  (cosX)^2 to get (1cosX)^2 / 1  … 
PreCalc
Trigonometric Identities Prove: (tanx + secx 1)/(tanx  secx + 1)= tanx + secx My work so far: (sinx/cosx + 1/cosx + cosx/cosx)/(sinx/cos x  1/cosx + cosx/cosx)= tanx + cosx (just working on the left side) ((sinx + 1  cosx)/cosx)/((sinx … 
Trigonometry.
( tanx/1cotx )+ (cotx/1tanx)= (1+secxcscx) Good one! Generally these are done by changing everything to sines and cosines, unless you see some obvious identities. Also generally, it is best to start with the more complicated side … 
Trig........
I need to prove that the following is true. Thanks (cosx / 1sinx ) = ( 1+sinx / cosx ) I recall this question causing all kinds of problems when I was still teaching. it requires a little "trick" L.S. =cosx/(1sinx) multiply top and … 
Mathematics  Trigonometric Identities
Prove: (tanx)(sinx) / (tanx) + (sinx) = (tanx)  (sinx) / (tanx)(sinx) What I have so far: L.S. = (sinx / cosx) sinx / (sinx / cosx) + sinx = (sin^2x / cosx) / (sinx + (sinx) (cosx) / cosx) = (sin^2x / cosx) / (cosx / sinx + sinxcosx) 
Math  Pre Clac
Prove that each of these equations is an identity. A) (1 + sinx + cos x)/(1 + sinx + cosx)=(1 + cosx)/sinx B) (1 + sinx + cosx)/(1  sinx + cosx)= (1 + sin x)/cosx Please and thankyou! 
maths  trigonometry
I've asked about this same question before, and someone gave me the way to finish, which I understand to some extent. I need help figuring out what they did in the second step though. How they got to the third step from the second. … 
Trigonometry Check
Simplify #3: [cosxsin(90x)sinx]/[cosxcos(180x)tanx] = [cosx(sin90cosxcos90sinx)sinx]/[cosx(cos180cosx+sinx180sinx)tanx] = [cosx((1)cosx(0)sinx)sinx]/[cosx((1)cosx+(0)sinx)tanx] = [cosxcosxsinx]/[cosx+cosxtanx] = [cosx(1sinx]/[cosx(1+tanx] … 
trigonometry
can i use factoring to simplify this trig identity? 
trigonometry
how do i simplify (secx  cosx) / sinx? i tried splitting the numerator up so that i had (secx / sinx)  (cosx / sinx) and then i changed sec x to 1/ cosx so that i had ((1/cosx)/ sinx)  (cos x / sinx) after that i get stuck