Physics.

posted by .

A block of mass 3m is placed on a frictionless horizontal surface, and a second block of mass m is placed on top of the first block. The surfaces of the blocks are rough. A constant force of magnitude F is applied to the first block.

a) Identify the horizontal force that causes the block of mass m to accelerate.
b) Assume that the upper block does not slip on the lower block, and find the acceleration of each block in terms of m and F.

  • Physics. -

    ,

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Physics

    A block of mass m1 = 4.1 kg rests on a frictionless horizontal surface. A second block of mass m2 = 1.7 kg hangs from an ideal cord of negligible mass that runs over an ideal pulley and then is connected to the first block. The blocks …
  2. physics

    A block of mass 4.0 kg is put on top of a block of mass M = 6.0 kg. To cause the top block to slip on the bottom one, while the bottom one is held fixed, a horizontal force of at least 19 N must be applied to the top block. The assembly …
  3. physics

    A block of mass 1.4kg is placed on a rough surface. the coefficient of friction between the surfaces is 0.58. A constance force of magnitude 10N, making an angle of 37 degrees with the horizontal is acting on the block. the block is …
  4. physics

    A 4.0 kg block is put on top of a 5.0 kg block. To cause the top block to slip on the bottom one while the bottom one is held fixed, a horizontal force of at least 16 N must be applied to the top block. The assembly of blocks is now …
  5. Physics

    A block of mass m = 2.00 kg rests on the left edge of a block of mass M = 8.00 kg. The coefficient of kinetic friction between the two blocks is 0.300, and the surface on which the 8.00- kg block rests is frictionless. A constant horizontal …
  6. Physics

    A block of mass 3m is placed on a frictionless horizontal surface, and a second block of mass m is placed on top of the first block. The surfaces of the blocks are rough. A constant force of magnitude F is applied to the first block. …
  7. Physics

    A block of mass 3m is placed on a frictionless horizontal surface, and a second block of mass m is placed on top of the first block. The surfaces of the blocks are rough. A constant force of magnitude F is applied to the first block …
  8. physics

    Block a is moving with a certain acceleration along a frictionless horizontal surface. When a second block B is placed on top of block A, the acceleration of the combined block drops to 1/5 the original value. What is the ratio of …
  9. Physics

    Two blocks, stacked one on top of the other, slide on a frictionless horizontal surface. The surface between the two blocks is rough, however, with a coefficient of static friction equal to 0.50. The top block has a mass of 2.6 kg, …
  10. Physics

    Two blocks, stacked one on top of the other, slide on a frictionless horizontal surface. The surface between the two blocks is rough, however, with a coefficient of static friction equal to 0.50. The top block has a mass of 2.6 kg, …

More Similar Questions